posted on 2019-12-19, 13:42authored byYoussef Hamid, David HuttDavid Hutt, David Whalley, Russell Craddock
Micro-electro-mechanical systems (MEMS) have allowed high precision pressure sensors to be manufactured at low cost, but they typically exhibit some level of hysteresis behaviour, which is believed to be primarily due to the materials used to package them. In order to evaluate the effects of the different packaging materials and processes, in this study, the performance of piezoresistive absolute pressure MEMS was measured for each of the first two packaging stages of the product assembly process. Sensing elements first packaged in a “floating exposed” configuration and then in an “attached exposed” configuration were compared. These two different packaging configurations exhibited distinct hysteresis behaviour when thermally cycled. After applying a third order polynomial fit to the raw data, stabilized and moving hysteresis loops were observed for the floating exposed and attached exposed configurations respectively. The stabilized hysteresis is believed to originate from the inelastic behaviour of the die metallisation, whereas the nonstabilized behaviour stems from the adhesive used to attach the die to the housing.
Funding
EPSRC Centre for Doctoral Training in Embedded Intelligence grant number EP/L014998/1.
History
School
Mechanical, Electrical and Manufacturing Engineering
Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.