Protection_and_Energy_Management_of_Zero.pdf (851.39 kB)
Download file

Protection and energy management of zero net electric energy clusters of buildings

Download (851.39 kB)
conference contribution
posted on 08.03.2016, 14:52 by Gaurav Pandey, Sri Niwas Singh, Bharat Singh Rajpurohit, Francisco Gonzalez-Longatt
This paper proposes the protection and energy management schemes for a smart dc micro-grid capable of 100% autonomous zero net energy in the cluster of buildings to facilitate a low-carbon sustainable electricity supply system. The proposed model comprises of house clusters with an autonomous communication developed for the residential area. Voltage droops and slope compensation peak current mode control techniques are employed for the bidirectional synchronous boost converter stages for energy storage systems (ESSs). The zone relaying device pertaining to dc protection is incorporated under set of rules related to current differential and overt current relaying schemes. The bidirectional converter stage for house clusters plays a pivotal role in stand-alone operation. In case a battery pack is laid off from any house cluster, the dc bus voltage still be stabilized due to the proximity bidirectional converter stages of other house clusters or community battery bank. The houses in the cluster comprise of permanent magnet synchronous generator (PMSG), solar photovoltaic (PV), battery bank and variable load. The proposed model is simulated on MATLAB/ Simulink environment and suffices the real time stochastic nature of wind, solar and load.



  • Mechanical, Electrical and Manufacturing Engineering

Research Unit

  • Centre for Renewable Energy Systems Technology (CREST)

Published in

4th Students’ Conference on Engineering and Systems 2015, SCES2015


PANDEY, G. ... et al, 2015. Protection and energy management of zero net electric energy clusters of buildings. 4th Students’ Conference on Engineering and Systems, SCES2015, 6th-8th November 2015, Allahabad, India.


The IEEE Student Branch, MNNIT Allahabad (© IEEE)


AM (Accepted Manuscript)

Publisher statement

This work is made available according to the conditions of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) licence. Full details of this licence are available at:

Publication date



© 2015 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.




Allahabad, India

Usage metrics