posted on 2009-12-04, 09:15authored byM. Grira, Jonathon Chambers
Partial updating is an effective method for
reducing computational complexity in adaptive filter implementations.
In this work, a novel random partial update
sum-squared auto-correlation minimization (RPUSAM)
algorithm is proposed. This algorithm has low computational
complexity whilst achieving improved convergence
performance, in terms of achievable bit rate, over a
partial update sum-squared auto-correlation minimization
(PUSAM) algorithm with a deterministic coefficient update
strategy. The performance advantage of the RPUSAM
algorithm is shown on eight different carrier serving area
test loops (CSA) channels and comparisons are made with
the original SAM and the PUSAM algorithms.
History
School
Mechanical, Electrical and Manufacturing Engineering
Citation
GRIRA, M. and CHAMBERS, J.A., 2008. Random partial update sum-squared autocorrelation minimization algorithm for channel shortening (RPUSAM). IN: Proceedings of 2008 3rd International Symposium on Communications, Control and Signal Processing (ISCCSP 2008), St. Julians, Malta, 12-14 March, pp. 1400-1403.