26515.pdf (409.21 kB)

Scheduling and control co-design of networked induction motor control systems

Download (409.21 kB)
conference contribution
posted on 18.09.2017, 08:58 by Dezong Zhao, Shangmin Zhang, Chunwen Li, Richard Stobart
This paper investigates the co-design of remote speed control and network scheduling for motion coordination of multiple induction motors through a shared communication network. An integrated feedback scheduling algorithm is designed to allocate the optimal sampling period and priority to each control loop to optimize the global performance of a networked control system (NCS), while satisfying the constraints of stability and schedulability. The rational gain of the network speed controllers is calculated using the Lyapunov theorem and online tuned by fuzzy logic to guarantee the robustness against complicated variations on the communication network. Furthermore, a state predictor is designed to compensate the time delay occurred in data transmission from the sensor to the controller, as a part of the networked controller. Simulation results are given to illustrate the effectiveness of the proposed control-and-scheduling co-design approach.



  • Aeronautical, Automotive, Chemical and Materials Engineering


  • Aeronautical and Automotive Engineering

Published in

2013 IEEE International Conference on Information and Automation, ICIA 2013


880 - 885


ZHAO, D. ... et al., 2013. Scheduling and control co-design of networked induction motor control systems. IN: Proceedings of 2013 IEEE International Conference on Information and Automation (ICIA 2013), Yinchuan, China, 26-28 August 2013, pp.880-885.




VoR (Version of Record)

Publisher statement

This work is made available according to the conditions of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) licence. Full details of this licence are available at: https://creativecommons.org/licenses/by-nc-nd/4.0/

Publication date



© 2013 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.





Usage metrics

Loughborough Publications