File(s) under permanent embargo

Reason: This item is currently closed access.

Some effects of database corruption in system prediction performance

conference contribution
posted on 16.08.2017, 08:12 by Matthew R. Chamberlain, Michael Jackson, Robert M. Parkin
Many types of intelligent adaptive systems use vast databases of a-priori knowledge during training phases. These systems are then reliant on both the accuracy of this data and on the breadth of the data. It is assumed whilst training that the data encompasses the total operating window for the system in enough detail to generate an accurate ‘black box’ model of the plant under control. It may be that under certain unforeseen operating conditions, or in a scenario where there is little prior knowledge, the system may be forced to operate outside the scope of the original a-priori knowledge. Lastly the data gathered into the a-priori source may have been unintentionally corrupted. This paper aims to examine some of these effects upon two common adaptive intelligent tools, neural networks and an adaptive neuro-fuzzy inference system, ANFIS, network.



  • Mechanical, Electrical and Manufacturing Engineering

Published in

The 15th International Conference on Mechatronics Technology


CHAMBERLAIN, M., JACKSON, M. and PARKIN, R., 2011. Some effects of database corruption in system prediction performance. IN: Proceedings of 2011 15th International Conference on Mechatronics Technology (ICMT2011), Melbourne, Australia, 30 November-2 December 2011.


ICMT Organizing Committee


AM (Accepted Manuscript)

Publisher statement

This work is made available according to the conditions of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) licence. Full details of this licence are available at:

Publication date





Melbourne Australia