The UK Government’s flagship energy efficiency program, the Green Deal, provides retrofit advice for household occupants based on a technical house survey and an engineering modelling tool. Smart meter data provides an opportunity to give bespoke advice to occupants based on the actual performance of their home and their own heating practices as well as visualisations of hourly and daily energy use. This work presents initial results from one component of a complex multidisciplinary research project which aims to use smart meter and smart home data to design and develop retrofit decision support concepts. Home visits involving creative design based research activities were carried out in five homes. Household occupants were presented with two types of energy use report; 1) a Green Deal advice report which includes suggested retrofit measures and annual energy consumption figures based on a steady state modelling approach and; 2) a personalised energy use report, based on smart meter data collected in their homes over a 12 month period. The home visits were carried out with the occupants to discuss a range of possible retrofit measures and gather feedback regarding the communication method for advice about energy efficiency improvements. Initial findings from the home visits indicate that the provision of energy feedback using smart meter data did not directly influence the occupants to make energy efficient retrofits any more than the Green Deal advice reports. However, the visualisation of actual hourly and daily energy use enabled householders to make links with their lived experience and stimulated discussions about their energy use which may impact on their preconceived ideas about energy use and energy efficiency measures.
History
School
Architecture, Building and Civil Engineering
Published in
European Council for an Energy Efficient Economy (ECEEE) 2015 Summer Study
Pages
1009 - 1020
Citation
KANE, T. ... et al, 2015. Supporting retrofit decisions using smart meter data: a multi-disciplinary approach. Paper presented at the European Council for an Energy Efficient Economy (ECEEE) 2015 Summer Study, Toulon/Hyères, France, June 2015, pp.1009-1020.
Publisher
REFIT
Version
AM (Accepted Manuscript)
Publisher statement
This work is made available according to the conditions of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) licence. Full details of this licence are available at: https://creativecommons.org/licenses/by-nc-nd/4.0/