posted on 2015-05-29, 13:55authored byAlkaios Bournias-Varotsis, Russell Harris, Ross Friel
Ultrasonic Additive Manufacturing (UAM) is an advanced manufacturing technique, which enables the embedding of electronic components and interconnections within solid aluminium structures, due to the low temperature encountered during material bonding. In this study, the effects of ultrasonic excitation, caused by the UAM process, on the electrical properties and the microstructure of thermally cured screen printed silver conductive inks were investigated. The electrical resistance and the dimensions of the samples were measured and compared before and after the ultrasonic excitation. The microstructure of excited and unexcited samples was examined using combined Focused Ion Beam and Scanning Electron Microscopy (FIB/SEM) and optical microscopy. The results showed an increase in the resistivity of the silver tracks after the ultrasonic excitation, which was correlated with a change in the microstructure: the size of the silver particles increased after the excitation, suggesting that inter-particle bonding has occurred. The study also highlighted issues with short circuiting between the conductive tracks and the aluminium substrate, which were attributed to the properties of the insulating layer and the inherent roughness of the UAM substrate. However, the reduction in conductivity and observed short circuiting were sufficiently small and rare, which leads to the conclusion that printed conductive tracks can function as interconnects in conjunction with UAM, for the fabrication of novel smart metal components.
Funding
This work was supported by the Engineering and
Physical Science Research Council (EPSRC) as part
of the Centre for Innovative Manufacturing in
Additive Manufacturing.
History
School
Mechanical, Electrical and Manufacturing Engineering
Published in
38th International Spring Seminar on Electronics Technology
Citation
BOURNIAS-VAROTSIS, A., HARRIS, R.A. and FRIEL, R.J., 2015. The effect of ultrasonic excitation on the electrical properties and microstructure of printed electronic conductive inks. IN: Proceedings of the 38th International Spring Seminar on Electronics Technology, Eger, Hungary, 6-10 May, pp.140-145.
This work is made available according to the conditions of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) licence. Full details of this licence are available at: https://creativecommons.org/licenses/by-nc-nd/4.0/