Analytical theories were developed for studying post-local buckling-driven delamination of thin layer materials under in-plane compressive stresses which can arise from externally applied mechanical loads, thermal stresses due to mismatch of coefficients of thermal expansion between the thin layer
material and the thick substrates, the intercalation stresses due to electrochemical lithiation and delithiation, and etc. The development was based on three mixed mode partition theories. They are Euler beam or classical plate, Timoshenko beam or shear deformable plate [1-5] and 2D-elasticity [6-8] theories. Independent experimental tests [9] show that, in general, the analytical partitions based on the Euler beam or classical plate theory predicts the propagation behaviour very well and much better than the partitions based on the Timoshenko beam and 2D-elasticity theories.
History
School
Aeronautical, Automotive, Chemical and Materials Engineering
Department
Aeronautical and Automotive Engineering
Published in
21st International Conference on Composite Materials
Citation
WANG, S. ... et al, 2017. The mechanics of interface fracture in layered composite materials: (4) buckling driven delamination of thin layer materials. 21st International Conference on Composite Materials (ICCM-21), Xi'an, China, 20th-25th August 2017.
Publisher
Chinese Society for Composite Materials
Version
AM (Accepted Manuscript)
Publisher statement
This work is made available according to the conditions of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) licence. Full details of this licence are available at: https://creativecommons.org/licenses/by-nc-nd/4.0/