Modern industrial machining environments face new challenges in implementing process monitoring systems to improve energy efficiency whilst ensuring quality standards. A process monitoring methodology for tool state identification during milling of aluminium has been implemented through the utilisation of an infrared (IR) camera. A features extraction procedure, based on statistical parameters calculation, was applied to temperature data generated by the IR camera. The features were utilised to build a fuzzy c-means (FCM) based decision making support system utilising pattern recognition for tool state identification. The environmental benefits deriving from the application of the developed monitoring system, are discussed in terms of prevention of rework/rejected products and associated energy and material efficiency improvements.
Funding
This research has been funded by Engineering and Physical
Science Research Council (EPSRC) in the UK and carried out
as part of activities of Centre for Innovative Manufacturing in
Industrial Sustainability.
History
School
Mechanical, Electrical and Manufacturing Engineering
Published in
The 22nd CIRP Conference on Life Cycle Engineering
Volume
29
Pages
526 - 531 (6)
Citation
SIMEONE, A., WOOLLEY, E. and RAHIMIFARD, S., 2015. Tool state assessment for reduction of life cycle environmental impacts of aluminium machining processes via infrared temperature monitoring. The 22nd CIRP Conference on Life Cycle Engineering, Sydney, Australia. Procedia CIRP, 29, pp. 526 - 531.
This work is made available according to the conditions of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) licence. Full details of this licence are available at: https://creativecommons.org/licenses/by-nc-nd/4.0/
Publication date
2015
Notes
This paper was published by Elsevier under a Creative Commons CC BY-NC-ND license, details available at: http://creativecommons.org/licenses/by-nc-nd/4.0/