WCPEC-aSi ageing_journal final.pdf (402.39 kB)
Download file

Towards modelling realistic ageing rates of amorphous silicon devices in operational environments

Download (402.39 kB)
conference contribution
posted on 20.05.2019, 12:42 by Jiang Zhu, Martin BlissMartin Bliss, Tom BettsTom Betts, Ralph Gottschalg
This paper presents a method to de-convolute the annealing and degradation processes of amorphous silicon devices. This will allow modelling realistic outdoor operation. Six devices underwent 14000 hours indoor light exposure at different and varying thermal conditions. The devices are exposed to light at variable temperatures between 25ºC and 85ºC under illumination as well as annealed in the dark. The temperature set-points were altered several times during the test to gain insights on how the balance between light induced degradation and thermal annealing is shifted. Measurements show that the degradation level is largely determined by the device’s operating temperature and both processes balance themselves out without consideration of device history. This is explained by the proposed modelling approach based on the defect pool model. The key parameters in the proposed modelling approach are the effective activation energies for degradation and annealing.

Funding

This work has been supported by a joint UK–India initiative in solar energy through a joint project ‘Stability and Performance of Photovoltaics (STAPP)’ funded by the Research Councils UK (RCUK) Energy Programme (contract no: EP/H040331/1) and by the Department of Science and Technology (DST) in India.

History

School

  • Mechanical, Electrical and Manufacturing Engineering

Published in

Japanese Journal of Applied Physics

Volume

54

Citation

ZHU, J. ... et al., 2015. Towards modelling realistic ageing rates of amorphous silicon devices in operational environments. Japanese Journal of Applied Physics, 54: 08KG03.

Publisher

© Japan Society of Applied Physics

Version

AM (Accepted Manuscript)

Publisher statement

This work is made available according to the conditions of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) licence. Full details of this licence are available at: https://creativecommons.org/licenses/by-nc-nd/4.0/

Acceptance date

25/02/2015

Publication date

2015

Notes

This is an author-created, un-copyedited version of an article published in Japanese Journal of Applied Physics. IOP Publishing Ltd is not responsible for any errors or omissions in this version of the manuscript or any version derived from it. The Version of Record is available online at https://doi.org/10.7567/JJAP.54.08KG03

ISSN

0021-4922

Language

en

Usage metrics

Keywords

Exports