Demonstration of polycrystalline thin film coatings on glass for spin Seebeck energy harvesting - dataset
Figure 2 TEM analysis of SSE5a. a) & b) STEM/BF and HAADF images of the thin film, respectively. c) Conventional HREM of the PM Pt layer. d) EDX line-scan performed perpendicular to the interfaces of the layers.
Figure 3 Summary of the magnetic, electric and thermal properties. a) Spin Seebeck voltage, VISHE (symbols), as a function of applied magnetic field plotted alongside magnetic data (line). b) Resistivity of the devices as a function of tPM. c) Normalised spin Seebeck voltage, SSSE, as a function of tPM, plotted alongside simulated SSSE (θSH = 0.1, λSD = 2 nm, Ms = 90 Am2/kg, D = 71x1041 Jm2[19], gr = 1,3 & 5x1018 m-2[20]). d) Definition of the parameters used to describe heat flow, (e) & (f) Change in ΔT2, and SSSE with substrate's thermal conductivity, κ3.
Figure S1 Characterisation of the Fe3O4 film. a) SQUID magnetometry above and below the Verwey transition, TV. b) Resistivity as a function of temperature. c) XRD of a set of 4 separately prepared Fe3O4 films. The inset shows a close-up of the (311), (222) peaks. d) Example XRR data (symbols) and fit (solid line), indicating thickness = 79 nm, roughness = 1.5 nm.
Figure S2 TEM analysis of SSE5a. a) & b) STEM/BF and HAADF images of the thin film, respectively. c) Conventional HREM of the PM Pt layer. d) & e) STEM/BF image of the thin film stack and corresponding EDX line-scan performed perpendicular to the interfaces of the layers, respectively, and f) schematic of the grain growth described in the text.
Figure S3 Characteristics of the bilayer film. a) XRD of SSE5a (2.5 nm Pt) and SSE20a (7.3 nm Pt). Inset shows a close-up of the Pt peak. b) XRR fit of SSE5a; Pt thickness = 2.5 nm, roughness = 2 nm.
Figure S4 Example spin Seebeck measurement for SSE7a (tPM = 3.2 nm) measured in fixed field as a function of temperature difference. Note that the sign convention for measurements, defined in Fig 1(a) of the main manuscript follows from Uchida et al.[6].
Funding
Feasibility of heat conversion to electricity by new spin Seebeck based thermoelectrics
Engineering and Physical Sciences Research Council
Find out more...History
School
- Science
Department
- Physics