Loughborough University
7 files

DrivAer Experimental Aerodynamic Dataset

posted on 2020-09-10, 13:01 authored by Max Varney, Martin Passmore, Felix Wittmeier, Timo Kuthada
This is a dataset for the 25% scale DrivAer model. Data was collected in the Large Wind Tunnel at Loughborough University, a 2.5m^2, closed working section, fixed ground open return tunnel.

The CAD geometry for the mounting hardware and the wind tunnel are all included in the dataset as ASCII .stl files, with the units in m. The CAD geometry of the DrivAer model has not been duplicated for this dataset.

Photos of the set up and some unique model dimensions are also included. The model was supplied by FKFS and is a 25% scale DrivAer model with three backs, the estate, fast and notchback variants. The model included the 5 spoke wheels, complex underbody, wing mirrors, the drivetrain, an open front grill and a porous radiator. As the model is not symmetric, in the engine bay and on the underside, it was set at a geometric 0 yaw condition as measured in the wind tunnel. This is estimated to be +/-0.1 degrees.

No corrections (for example blockage) have been applied to the data. All the data is presented in SI units and all measurements are from the origin (mid-track, mid-wheelbase on the tunnel floor) with x positive downstream and z positive up, using the right hand rule to find positive y.

The data is split into '_Mean' and '_Instantaneous' for each measurement type (Force, Pressure, Flow Field). All the data was taken during the same test session with a total sample time of 300 seconds typically and 100 seconds for the measurements in the stagnation region. The different data sets are not correlated with each other in time. The Force data was sampled at 300Hz, Pressure data at 260Hz and the Flow Field data at 5Hz. The data presented in the '_Mean' folders is the arithmetic mean of that presented in the '_Instantaneous' folders.

All the '_Mean' folders contain Comma Separated Variable (csv) files, for ease of parsing with your desired programming language, and the same data is provided in a .dat file that is set up to be read into TecPlot. The csv format was used to reduce size and complexity for the '_Instantaneous' data. Example MATLAB code has been provided (tested in 2018a) that reads both the '_Mean' and '_Instantaneous' csv files for the pressure and flow field measurements, plotting them accordingly.



  • Aeronautical, Automotive, Chemical and Materials Engineering


  • Aeronautical and Automotive Engineering