1/1
11 files

Supplementary Information Files for 'Acetate production from inorganic carbon (HCO3-) in photo-assisted biocathode microbial electrosynthesis systems using WO3/MoO3/g-C3N4 heterojunctions and Serratia marcescens species.'

dataset
posted on 04.02.2020, 10:38 by Zhenghong Cai, Liping Huang, Xie Quan, Zongbin Zhao, Yong Shin, Gianluca Li-PumaGianluca Li-Puma
Supplementary Information Files for 'Acetate production from inorganic carbon (HCO3-) in photo-assisted biocathode microbial electrosynthesis systems using WO3/MoO3/g-C3N4 heterojunctions and Serratia marcescens species.'

Abstract:
The efficient production of acetate from HCO3− is demonstrated in a photo-assisted microbial electrosynthesis system (MES) incorporating a WO3/MoO3/g-C3N4 heterojunction photo-assisted biocathode supporting Serratia marcescens Q1 electrotroph. The WO3/MoO3/g-C3N4 structured electrode consisting of a layer of g-C3N4 coated on graphite felt decorated with W/Mo oxides nanoparticles exhibited stable photocurrents, 4.8 times higher than the g-C3N4 electrode and acetate production of 3.12 ± 0.20 mM/d with a CEacetate of 73 ± 4 % and current of 2.5 ± 0.3 A/m2. Photo-induced electrons on the conduction bands of WO3/MoO3/g-C3N4 favoured hydrogen evolution, which was metabolized by S. marcescens with HCO3− to acetate, while the holes were refilled by the electrons travelling from the anode. Such mechanism reduced the interfacial resistances creating a supplementary driving force leading to higher acetate production. The biocompatible components of WO3/MoO3/g-C3N4 synergistically couple light-harvesting and further catalyze S. marcescens to acetate from HCO3−, providing a feasible strategy for achieving sustainable high rates of acetate production.

Funding

National Natural Science Foundation of China (Nos. 21777017 and 51578104)

History

School

  • Aeronautical, Automotive, Chemical and Materials Engineering

Department

  • Chemical Engineering

Usage metrics

Categories

Exports