File(s) under embargo

Reason: Publisher requirement.

1

day(s)

until file(s) become available

Supplementary information files for Computational fluid dynamics (CFD) modeling of removal of contaminants of emerging concern in solar photo-Fenton raceway pond reactors

dataset
posted on 27.11.2020, 11:55 by Rodrigo Peralta-Muniz-Moreira, Alejandro Cabrera Reina, Paula Soriano Molina, Jose Antonio Sánchez Pérez, Gianluca Li-PumaGianluca Li-Puma
Supplementary files for article Computational fluid dynamics (CFD) modeling of removal of contaminants of emerging concern in solar photo-Fenton raceway pond reactors. The impact of mixing and hydrodynamics on the removal of contaminants of emerging concern (CECs) detected in a secondary WWTP effluent by the solar photo-Fenton process in a pilot scale Raceway Pond Reactor (RPR) was investigated by computational fluid dynamics (CFD). The CFD model incorporated the solar photo-Fenton CECs oxidation kinetics at neutral pH with Fe3+-EDDS, the radiation transport through the water, and the turbulent flow field produced by a paddle wheel mixer. The fluid dynamics was solved by a transient-multiphase flow model (Volume of Fluid with Sliding Mesh Model) and by a steady-state momentum source domain (SD) model. Experimental RPR mixing time and CECs removal under transient conditions validated the models. The computationally faster SD model predicted the CECs removal varying the paddle wheel rotational speed, the solar irradiance, and fluid residence time. Deviations from an ideal CSTR were significative (>10%) when the CECs half-life/mixing time ratios were >1, while residence time had minor influence. The mixing effects were amplified in a scaled-up RPR and treatment capacity decreased 10% compared with a CSTR. Overall, this study reveals that the design of hydrodynamics in large-scale RPRs must be carefully examined to reduce power consumption while increasing mixing performance.

Funding

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), Brazil (Finance Code 001)

LIFE ULISES project funded by the European Union under the LIFE Financial Programme Grant Agreement No. LIFE18 ENV/ES/000165

History

School

  • Aeronautical, Automotive, Chemical and Materials Engineering

Department

  • Chemical Engineering