Loughborough University
Browse
VIDEO
am3c00281_si_001.mov (5.17 MB)
VIDEO
am3c00281_si_002.mov (8.56 MB)
VIDEO
am3c00281_si_003.mov (9.04 MB)
VIDEO
am3c00281_si_004.mov (3.57 MB)
VIDEO
am3c00281_si_005.mov (4.94 MB)
VIDEO
am3c00281_si_006.mov (1.09 MB)
VIDEO
am3c00281_si_007.mov (825.68 kB)
DOCUMENT
am3c00281_si_008.pdf (629.47 kB)
1/0
8 files

Supplementary information files for Lego-inspired glass capillary microfluidic device: a technique for bespoke microencapsulation of phase change materials

dataset
posted on 2023-07-26, 13:32 authored by Sumit Parvate, Goran VladisavljevicGoran Vladisavljevic, Nico Leister, Alexandros Spyrou, Guido Bolognesi, Daniele Baiocco, Zhibing Zhang, Sujay Chattopadhyay

Supplementary files for article Lego-inspired glass capillary microfluidic device: a technique for bespoke microencapsulation of phase change materials

We report a Lego-inspired glass capillary microfluidic device capable of encapsulating both organic and aqueous phase change materials (PCMs) with high reproducibility and 100% PCM yield. Oil-in-oil-in-water (O/O/W) and water-in-oil-in-water (W/O/W) core–shell double emulsion droplets were formed to encapsulate hexadecane (HD, an organic PCM) and salt hydrate SP21EK (an aqueous PCM) in a UV-curable polymeric shell, Norland Optical Adhesive (NOA). The double emulsions were consolidated through on-the-fly polymerization, which followed thiol-ene click chemistry for photoinitiation. The particle diameters and shell thicknesses of the microcapsules were controlled by manipulating the geometry of glass capillaries and fluid flow rates. The microcapsules were monodispersed and exhibited the highest encapsulation efficiencies of 65.4 and 44.3% for HD and SP21EK-based materials, respectively, as determined using differential scanning calorimetry (DSC). The thermogravimetric (TGA) analysis confirmed much higher thermal stability of both encapsulated PCMs compared to pure PCMs. Polarization microscopy revealed that microcapsules could sustain over 100 melting–crystallization cycles without any structural changes. Bifunctional microcapsules with remarkable photocatalytic activity along with thermal energy storage performance were produced after the addition of 1 wt % titanium dioxide (TiO2) nanoparticles (NPs) into the polymeric shell. The presence of TiO2 NPs in the shell was confirmed by higher opacity and whiteness of these microcapsules and was quantified by energy dispersive X-ray (EDX) spectroscopy. Young’s modulus of HD-based microcapsules estimated using micromanipulation analysis increased from 58.5 to 224 MPa after TiO2 incorporation in the shell. 

Funding

Commonwealth Scholarship Commission (CSC), UK

History

School

  • Aeronautical, Automotive, Chemical and Materials Engineering

Department

  • Chemical Engineering

Usage metrics

    Chemical Engineering

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC