Journal of CM - Manuscript.pdf (8.54 MB)

Anisotropic mechanical behaviour of calendered nonwoven fabrics: strain-rate dependency

Download (8.54 MB)
journal contribution
posted on 20.11.2020, 09:39 by Vincenzo Cucumazzo, Emrah Demirci, Behnam Pourdeyhimi, Vadim Silberschmidt
Calendered nonwovens, formed by polymeric fibres, are three-phase heterogeneous materials, comprising a fibrous matrix, bond-areas and interface regions. As a result, to main factors of anisotropy can be identified. The first one is ascribable to a random fibrous microstructure, with the second one related to orientation of a bond pattern. This paper focuses on the first type of anisotropy in thin and thick nonwovens under uniaxial tensile loading. Individual and combined effects of anisotropy and strain rate were studied by conducting uniaxial tensile tests in various loading directions (0°, 30°, 45°, 60° and 90° with regard to the main fabric’s direction) and strain rate (0.01, 0.1 and 0.5 s-1). Fabrics exhibited an initial linear elastic response, followed by nonlinear strain hardening up to necking and final softening. The studied allowed assessment of the extent the effects of loading direction (anisotropy), planar density and strain rate on the mechanical response of the calendered fabrics. The evidence supported the conclusion that anisotropy is the most crucial factor, also delineating the balance between the fabric’s load-bearing capacity and extension level along various directions. Additionally, individual fibres extracted from the fabrics were tested at various strain rates – 0.001, 0.01, 0.1 and 0.5 s-1 – to study their rate-dependent effects. The strain rate produced a marked effect on the fibre’s response, with increased stress at higher strain rate while this effect in the fabric was small. The results demonstrated the differences of the mechanical behaviour of fabrics from that of their constituent fibres.


The Nonwovens Institute of North Carolina State University, Raleigh, NC [grant no. 16- 196, 2017]



  • Mechanical, Electrical and Manufacturing Engineering

Published in

Journal of Composite Materials


SAGE Publications


AM (Accepted Manuscript)

Publisher statement

This paper was accepted for publication in the journal Journal of Composite Materials and the definitive published version will be available at Users who receive access to an article through a repository are reminded that the article is protected by copyright and reuse is restricted to non-commercial and no derivative uses. Users may also download and save a local copy of an article accessed in an institutional repository for the user's personal reference.

Acceptance date









Dr Emrah Demirci. Deposit date: 17 November 2020


Logo branding