Knowles AIAA 2015.pdf (1.36 MB)

Bifurcation study of a dynamic model of a landing gear mechanism

Download (1.36 MB)
journal contribution
posted on 29.02.2016 by James Knowles
This paper presents a new modelling approach for the analysis of landing gear mecha- nisms. By replacing the mechanism's rotational joints with equivalent high-sti ness elas- tic joints, numerical continuation methods can be applied directly to dynamic models of landing gear mechanisms. The e ects of using elastic joints are considered through two applications | an overcentre mechanism, and a nose landing gear mechanism. In both cases, selecting a su cient sti ness for the elastic joint is shown to provide accurate con- tiuation results. The advantages of this new modelling approach are then demonstrated by considering the unlocking of a nose landing gear with a single uplock/downlock mechanism, when subjected to di erent orientations and magnitudes of gravitational loading. The un- locking process is shown to be qualitatively insensitive to changes in both load angle and load magnitude, ratifying the robustness of a previously-proposed control methodology for unlocking a nose landing gear with a single uplock/downlock mechanism.



  • Aeronautical, Automotive, Chemical and Materials Engineering


  • Aeronautical and Automotive Engineering

Published in

Journal of Aircraft: devoted to aeronautical science and technology


KNOWLES, J.A.C., 2016. Bifurcation study of a dynamic model of a landing gear mechanism. Journal of Aircraft, 53 (5), pp. 1468-1477.


© American Institute of Aeronautics and Astronautics


AM (Accepted Manuscript)

Publisher statement

This work is made available according to the conditions of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) licence. Full details of this licence are available at:

Publication date



This is the accepted version of a paper that was subsequently published in the serial, Journal of Aircraft. The definitive version is available at:






Logo branding