Boron mass.pdf (176.92 kB)
0/0

Boron mass transfer during seeded microfiltration.

Download (176.92 kB)
journal contribution
posted on 24.01.2012 by Richard Holdich, Iain W. Cumming, Stefano Perni
Seeded microfiltration combines the processes of microfiltration and sorption of a solute onto a solid particle, including ion exchange. The process can be performed for investigations in simple stirred cells, for laboratory mass transfer analysis, and for process-scale applications in crossflow filtration systems. Seeded microfiltration of boron at feed concentrations of up to 4 ppm using a N-glucamine type ion exchange resin showed that the process was dependent on the internal diffusion of boron inside the resin particle, with an effective particle diffusivity of 5.5 x 10−10m2 s−1. The kinetics of the process were modelled by a coupled mass transfer model, based on a well mixed stirred system, aqueous film diffusion, particle diffusion and a Langmuir type isotherm for the equilibrium conditions. The modelling suggests that a resin particle diameter of 50μm would provide improved boron extraction performance, whilst easily being retained within the microfiltration process. A comparison of the analysis of mass transfer between a conventional batch stirred cell and the continuously fed seeded microfiltration system shows that the continuously fed system has many advantages for the laboratory investigation of mass transfer parameters.

History

School

  • Aeronautical, Automotive, Chemical and Materials Engineering

Department

  • Chemical Engineering

Citation

HOLDICH, R.G., CUMMING, I.W. and PERNI, S., 2006. Boron mass transfer during seeded microfiltration. Chemical Engineering Research and Design, 84 (A1), pp. 60 - 68

Publisher

Elsevier © Institution of Chemical Engineers

Version

AM (Accepted Manuscript)

Publication date

2006

Notes

This article was published in the journal, Chemical Engineering Research and Design [Elsevier © Institution of Chemical Engineers]. The definitive version is available at: http://www.sciencedirect.com/science/article/pii/S0263876206728581

ISSN

0263-8762

Language

en

Exports

Logo branding

Exports