File(s) not publicly available

Reason: This item is currently closed access.

Effects of fullerenes reinforcement on the performance of 96.5Sn–3Ag–0.5Cu lead-free solder

journal contribution
posted on 27.08.2015 by Guang Chen, Fengshun Wu, Changqing Liu, Weisheng Xia, Hui Liu
In this study, fullerenes (FNSs) nanoparticles with different weight fractions (0.05, 0.1 and 0.2 wt%) were successfully integrated into SAC305 lead-free solder utilizing a powder metallurgy route. The composite solders were then studied extensively concerning their microstructures, wettability, thermal and mechanical properties. Refined microstructures were observed in the matrices of the composite solders after the addition of FNSs nanoparticles to the solder alloy. With an increase in the amount of FNSs nanoparticles added, the composite solders exhibited a homologous improvement in wettability. Furthermore, the electrical resistance and melting point of the solder changed only marginally after the addition of the FNSs nanoparticles. According to the mechanical results, the 0.2 wt% FNSs addition would give rise to a 12.1% and 19.9% improvement in shear strength and microhardness respectively in comparison to the unreinforced solders. These progressions can be attributed to the refined microstructures and the presence of uniformly dispersed FNSs nanoparticles, which acted as reinforcements. Finally, the existence of added FNSs nanoparticles in the solder matrix was further confirmed by energy-dispersive X-ray spectroscopy, scanning electron microscopy, and Raman spectroscopy.

Funding

National Nature Science Foundation of China (NSFC) and The Research Grants Council (RGC) Joint Research Project (NSFC NO. No. 61261160498, RGC no. CityU101/12). This research was also supported by ChinaEuropean Union Technology Cooperation Project, No. 1110 as well as Marie Curie International Research Staff Exchange Scheme Project within the 7th European Community Framework Programme, No. PIRSES-GA-2010-269113, entitled “Micro-Multi-Material Manufacture to Enable Multifunctional Miniaturised Devices (M6)”.

History

School

  • Mechanical, Electrical and Manufacturing Engineering

Published in

Materials Science and Engineering A: Structural Materials: Properties, Microstructure and Processing

Citation

CHEN, G. et al., 2015. Effects of fullerenes reinforcement on the performance of 96.5Sn–3Ag–0.5Cu lead-free solder. Materials Science and Engineering A: Structural Materials: Properties, Microstructure and Processing, 636 (June), pp. 484–492.

Publisher

© Elsevier B.V.

Version

VoR (Version of Record)

Publisher statement

This work is made available according to the conditions of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) licence. Full details of this licence are available at: https://creativecommons.org/licenses/by-nc-nd/4.0/

Publication date

2015

Notes

Closed access

ISSN

1873-4936

Language

en

Exports