Manuscript-20190515.pdf (1.43 MB)

Electrode erosion and lifetime performance of a compact and repetitively triggered field distortion spark gap switch

Download (1.43 MB)
journal contribution
posted on 07.02.2020 by F Song, F Li, B Zhang, M Zhu, C Li, G Wang, H Gong, Y Gan, X Jin, Bucur Novac, Ivor Smith
© 1973-2012 IEEE. The electrode erosion and lifetime performance of a compact and repetitively triggered field distortion spark gap switch were studied at a repetitive frequency rate of 30 Hz, a peak current of 8.5 kA, and a working voltage of ±35 kV when the switch was filled with a gas mixture of 30% SF6 and 70% N2 at a pressure of 0.3 MPa. The variations of the time-delay jitter and the self-breakdown voltage were both studied for the whole service lifetime of the spark gap switch. The morphology of both the electrodes and the plate insulator, before and after the service lifetime tests, is also analyzed. The results show that during these tests, the time-delay jitter is basically synchronized with the self-breakdown voltage jitter, and both undergo firstly a process of rapidly decreasing their values, then remaining stable, and finally and gradually increasing after 70 000 pulses. The change in the electrode surface roughness (i.e., surface profile) is caused by erosion and chemical deposits in the switch cavity, which are mainly the two factors that affect the time-delay jitter of the switch. Tip protrusions on the electrode surface, due to electrode erosion, contribute to reducing the time-delay jitter. However, due to chemical reactions, fluorides and sulfides are deposited on the switch components, as well as metal particles caused by electrode erosion sputtering. Slowly, after a large number of shots, all these phenomena affect the self-breakdown performance resulting in an increased self-breakdown voltage jitter, which also causes the time-delay jitter to increase. Although there are a number of reasons that contribute to the deterioration of the performance of the switch, it is fortunate that if a switch suffering a degraded performance is reassembled, with the electrodes mechanically polished and all the components cleaned, the optimal performance of the switch can be restored. If maintenance work is carried out regularly to preserve the condition of the switch's inner components, the service lifetime of the switch can be prolonged.



  • Mechanical, Electrical and Manufacturing Engineering

Published in

IEEE Transactions on Plasma Science






212 - 218




AM (Accepted Manuscript)

Rights holder


Publisher statement

Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

Acceptance date


Publication date


Copyright date









Prof Bucur Novac Deposit date: 6 February 2020