2017_Applied+Energy_CHPaccepted.pdf (2.11 MB)

Energy- and exergy-based working fluid selection and performance analysis of a high-temperature PEMFC-based micro combined cooling heating and power system

Download (2.11 MB)
journal contribution
posted on 18.08.2017 by Huawei Chang, Zhongmin Wan, Yao Zheng, Xi Chen, Shuiming Shu, Zhengkai Tu, Siew H. Chan, Rui Chen, Xiaodong Wang
A combined cooling heating and power (CCHP) system based on high-temperature proton exchange membrane fuel cell (PEMFC) is proposed. This CCHP system consists of a PEMFC subsystem, an organic Rankine cycle (ORC) subsystem and a vapor compression cycle (VCC) subsystem. The electric power of the CCHP system is 8 kW under normal operating conditions, the domestic hot water power is approximately 18 kW, and the cooling and heating capacities are 12.5 kW and 20 kW, respectively. Energy and exergy performance of the CCHP system are thoroughly analyzed for six organic working fluids using Matlab coupled with REFPROP. R601 is chosen as the working fluid for ORC subsystem based on energy and exergy analysis. The results show that the average coefficient of performance (COP) of the CCHP system is 1.19 in summer and 1.42 in winter, and the average exergy efficiencies are 46% and 47% under normal operating conditions. It can also be concluded that both the current density and operating temperature have significant effects on the energy performance of the CCHP system, while only the current density affects the exergy performance noticeably. The ambient temperature can affect both the energy and exergy performance of the CCHP system. This system has the advantages of high facility availability, high efficiency, high stability, low noise and low emission; it has a good prospect for residential applications.

Funding

This work is supported by the National Natural Science Foundation of China (Nos. 51376058, 51476119 and 51676067) and the International Science and Technology Cooperation Program of China (No. 2014DFA60990).

History

School

  • Aeronautical, Automotive, Chemical and Materials Engineering

Department

  • Aeronautical and Automotive Engineering

Published in

Applied Energy

Volume

204

Pages

446 - 458

Citation

CHANG, H. ... et al, 2017. Energy- and exergy-based working fluid selection and performance analysis of a high-temperature PEMFC-based micro combined cooling heating and power system. Applied Energy, 204, pp. 446-458.

Publisher

© Elsevier

Version

AM (Accepted Manuscript)

Publisher statement

This work is made available according to the conditions of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) licence. Full details of this licence are available at: https://creativecommons.org/licenses/by-nc-nd/4.0/

Publication date

2017

Notes

This paper was published in the journal Applied Energy and the definitive published version is available at https://doi.org/10.1016/j.apenergy.2017.07.031.

ISSN

0306-2619

Language

en

Exports