File(s) not publicly available

Reason: This item is currently closed access.

Extraordinary magnetoresistance: sensing the future

journal contribution
posted on 11.07.2013 by Thomas H. Hewett, Feodor Kusmartsev
Simulations utilising the finite element method (FEM) have been produced in order to investigate aspects of circular extraordinary magnetoresistance (EMR) devices. The effect of three specific features on the resultant magnetoresistance were investigated: the ratio of the metallic to semiconducting conductivities ( M/ S); the semiconductor mobility; and the introduction of an intermediate region at the semiconductormetal interface in order to simulate a contact resistance. In order to obtain a large EMR effect the conductivity ratio ( M/ S) is required to be larger than two orders of magnitude; below this critical value the resultant magnetoresistance effect is dramatically reduced. Large mobility semiconductors exhibit larger EMR values for a given field (below saturation) and reduce the magnetic field required to produce saturation of the magnetoresistance. This is due to a larger Hall angle produced at a given magnetic field and is consistent with the mechanism of the EMR effect. Since practical magnetic field sensors are required to operate at low magnetic fields, high mobility semiconductors are required in the production of more sensitive EMR sensors. The formation of a Schottky barrier at the semiconductor-metal interface has been modelled with the introduction of a contact resistance at the semiconductor-metal interface. Increasing values of contact resistance are found to reduce the EMR effect with it disappearing altogether for large values. This has been shown explicitly by looking at the current flow in the system and is consistent with the mechanism of the EMR effect. The interface resistance was used to fit the simulated model to existing experimental data. The best fit occurred with an interface with resistivity of 1.55×10−4 m (overestimate). The EMR effect holds great potential with regard to its future application to magnetic field sensors. The design of any such devices should incorporate high mobility materials (such as graphene) along with the specific features presented in this paper in order to produce effective magnetic field sensors.



  • Science


  • Physics


HEWETT, T.H. and KUSMARTSEV, F.V., 2012. Extraordinary magnetoresistance: sensing the future. Central European Journal of Physics, 10 (3), pp. 1 - 7


Springer Verlag © Versita sp. z o. o.


VoR (Version of Record)

Publication date



This article is closed access, it was published in the serial Central European Journal of Physics [Springer Verlag © Versita sp. z o. o.]. The definitive version is available at:








Logo branding