Wright_etal_JMCC_2014.pdf (1.71 MB)
0/0

Fused H-shaped tetrathiafulvalene-oligothiophenes as charge transport materials for OFETs and OPVs

Download (1.71 MB)
journal contribution
posted on 16.06.2017 by Iain Wright, Neil J. Findlay, Sasikumar Arumugam, Anto R. Inigo, Alexander L. Kanibolotsky, Pawel Zassowski, Wojciech Domagala, Peter J. Skabara
A series of hybrid tetrathiafulvalene-oligothiophene compounds has been synthesised, where the tetrathiafulvalene unit is fused at each side to an end-capped oligothiophene chain of varying length (terthiophene, quinquithiophene and septithiophene). Each hybrid structure (1-3) has been studied by cyclic voltammetry and triple EPR-UV-Vis-NIR spectroelectrochemistry in the case of the quinquithiophene compound (2). Comparison is made with the corresponding half-units, which lack the fulvalene core and contain just one oligothiophene chain. The highest hole mobility of quinquithiophene-TTF 2 was obtained from field effect transistors (8.61 × 10-3 cm 2 V-1 s-1); its surface morphology was characterised by tapping mode atomic force microscopy and a power conversion of 2.5% was achieved from a bulk heterojunction organic solar cell device using PC71BM as the acceptor. This journal is © the Partner Organisations 2014.

Funding

P. J. S. thanks the Royal Society for a Wolfson Research Merit Award and the EPSRC for funding. W. D. & P. Z. acknowledge the support of the Laboratory of Advanced Spectroelectrochemical Studies, established with financial contribution of the Polish National Science Centre grant no. 2011/03/D/ST5/ 06042.

History

School

  • Science

Department

  • Chemistry

Published in

Journal of Materials Chemistry C

Volume

2

Issue

15

Pages

2674 - 2683

Citation

WRIGHT, I.A. ...et al., 2014. Fused H-shaped tetrathiafulvalene-oligothiophenes as charge transport materials for OFETs and OPVs. Journal of Materials Chemistry C, 2 (15), pp. 2674 - 2683

Publisher

© The Royal Society of Chemistry

Version

AM (Accepted Manuscript)

Publisher statement

This work is made available according to the conditions of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) licence. Full details of this licence are available at: https://creativecommons.org/licenses/by-nc-nd/4.0/

Publication date

2014

Notes

This article was published in the journal Journal of Materials Chemistry C [© Royal Society of Chemistry] and the definitive version is available at: http://dx.doi.org/10.1039/c3tc32571g

ISSN

2050-7534

eISSN

2050-7526

Language

en

Exports

Logo branding

Keyword(s)

Exports