1-s2.0-S0264127520304056-main.pdf (2.28 MB)
0/0

Fused filament fabrication of functionally graded polymer composites with variable relative permittivity for microwave devices

Download (2.28 MB)
journal contribution
posted on 08.06.2020 by Athanasios Goulas, Shiyu Zhang, Jack McGhee, Darren Cadman, William Whittow, J. C. Vardaxoglou, Daniel Engstrom
Fused filament fabrication (FFF) is a continuously growing additive manufacturing technology that aside from physical prototypes can also deliver functional prototypes and devices for radiofrequency (RF) and microwave applications. The very recent introduction of high-permittivity filaments for FFF has been one of the main facilitators for this major advancement, aiding microwave engineers to realise academics concepts that have thus far been impossible to fabricate and therefore invent new designs. However, the value to the RF community of these devices depends on accurate knowledge and repeatability of the electromagnetic properties of the materials being used which strongly relies on the processing strategy used during printing. This paper investigates the use of a high-permittivity filament and studies the impact of layer height and infill density on the relative permittivity (εr) and loss tangent (tanδ). A maximum relative permittivity of εr = 9.63 ± 0.16 and tanδ = 0.003 ± 0.0003 was achieved with a 200 μm layer thickness and 100% infill density. Finally, the results of this study are used in designing, simulating, 3D printing and measuring the performance of a novel graded-index dielectric lens operating at 10 GHz.

Funding

Synthesizing 3D METAmaterials for RF, microwave and THz applications (SYMETA) : EP/N010493/1

History

School

  • Mechanical, Electrical and Manufacturing Engineering

Published in

Materials & Design

Volume

193

Publisher

Elsevier

Version

VoR (Version of Record)

Rights holder

© The Authors

Publisher statement

This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

Acceptance date

06/06/2020

Publication date

2020-06-08

Copyright date

2020

ISSN

0264-1275

Language

en

Depositor

Dr Thanos Goulas. Deposit date: 6 June 2020

Article number

108871

Licence

Exports

Logo branding

Licence

Exports