FLS_final.pdf (347.69 kB)
0/0

Hamiltonian operators of Dubrovin-Novikov type in 2D

Download (347.69 kB)
journal contribution
posted on 05.02.2016 by Evgeny Ferapontov, Paolo Lorenzoni, Andrea Savoldi
First order Hamiltonian operators of differential-geometric type were introduced by Dubrovin and Novikov in 1983, and thoroughly investigated by Mokhov. In 2D, they are generated by a pair of compatible flat metrics g and ~g which satisfy a set of additional constraints coming from the skew-symmetry condition and the Jacobi identity. We demonstrate that these constraints are equivalent to the requirement that ~g is a linear Killing tensor of g with zero Nijenhuis torsion. This allowed us to obtain a complete classification of n-component operators with n≤4 (for n = 1; 2 this was done before). For 2D operators the Darboux theorem does not hold: the operator may not be reducible to constant coefficient form. All interesting (non-constant) examples correspond to the case when the flat pencil g; ~g is not semisimple, that is, the affinor ~gg⁻ⁱ has non-trivial Jordan block structure. In the case of a direct sum of Jordan blocks with distinct eigenvalues we obtain a complete classification of Hamiltonian operators for any number of components n, revealing a remarkable correspondence with the class of trivial Frobenius manifolds modelled on H*(CPn⁻ⁱ).

History

School

  • Science

Department

  • Mathematical Sciences

Published in

Letters in Mathematical Physics

Citation

FERAPONTOV, E.V., LORENZONI, P. and SAVOLDI, A., 2015. Hamiltonian operators of Dubrovin-Novikov type in 2D. Letters in Mathematical Physics, 105 (3), pp.341-377.

Publisher

© Springer Verlag (Germany)

Version

AM (Accepted Manuscript)

Publisher statement

This work is made available according to the conditions of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) licence. Full details of this licence are available at: https://creativecommons.org/licenses/by-nc-nd/4.0/

Publication date

2015

Notes

The final publication is available at Springer via http://dx.doi.org/10.1007/s11005-014-0738-6.

ISSN

1573-0530

Language

en

Exports