File(s) under permanent embargo

Reason: This item is currently closed access.

Investigating Moorella thermoacetica metabolism with a genome-scale constraint-based metabolic model

journal contribution
posted on 07.11.2017 by Ahsan Islam, Karsten Zengler, Elizabeth A. Edwards, Radhakrishnan Mahadevan, Gregory Stephanopoulos
Moorella thermoacetica is a strictly anaerobic, endospore-forming, and metabolically versatile acetogenic bacterium capable of conserving energy by both autotrophic (acetogenesis) and heterotrophic (homoacetogenesis) modes of metabolism. Its metabolic diversity and the ability to efficiently convert a wide range of compounds, including syngas (CO + H2) into acetyl-CoA have made this thermophilic bacterium a promising host for industrial biotechnology applications. However, lack of detailed information on M. thermoacetica’s metabolism is a major impediment to its use as a microbial cell factory. In order to overcome this issue, a genome-scale constraint-based metabolic model of Moorella thermoacetica, iAI558, has been developed using its genome sequence and physiological data from published literature. The reconstructed metabolic network of M. thermoacetica comprises 558 metabolic genes, 705 biochemical reactions, and 698 metabolites. Of the total 705 model reactions, 680 are gene-associated while the rest are non-gene associated reactions. The model, in addition to simulating both autotrophic and heterotrophic growth of M. thermoacetica, revealed degeneracy in its TCA-cycle, a common characteristic of anaerobic metabolism. Furthermore, the model helped elucidate the poorly understood energy conservation mechanism of M. thermoacetica during autotrophy. Thus, in addition to generating experimentally testable hypotheses regarding its physiology, such a detailed model will facilitate rapid strain designing and metabolic engineering of M. thermoacetica for industrial applications.

Funding

Support by the MIT Energy initiative and the DOE Grant (#DE-FOA-0001060) is gratefully acknowledged.

History

School

  • Aeronautical, Automotive, Chemical and Materials Engineering

Department

  • Chemical Engineering

Published in

Integr. Biol.

Volume

7

Issue

8

Pages

869 - 882

Citation

ISLAM, M. ... et al., 2015. Investigating Moorella thermoacetica metabolism with a genome-scale constraint-based metabolic model. Integrative Biology, 7 (8), pp.869-882.

Publisher

© Royal Society of Chemistry

Version

VoR (Version of Record)

Publisher statement

This work is made available according to the conditions of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) licence. Full details of this licence are available at: https://creativecommons.org/licenses/by-nc-nd/4.0/

Publication date

2015

ISSN

1757-9694

eISSN

1757-9708

Language

en

Exports

Logo branding

Keyword(s)

Exports