File(s) not publicly available

Reason: This item is currently closed access.

Investigation of the biomechanical integrity of decellularized rat abdominal aorta

journal contribution
posted on 01.03.2019 by Michalis Katsimpoulas, Lucrezia Morticelli, Efstathios Michalopoulos, Ioanna Gontika, C. Stavropoulos-Giokas, A. Kostakis, Axel Haverich, Sotiris Korossis
Objectives. The loss or damage of an organ or tissue is one of the most common and devastating problems in healthcare today. Tissue engineering applies the principles of engineering and biology toward the development of functional biological replacements that are able to maintain, improve, or restore the function of pathological tissues. The aim of the overall project is to study an already existing method for the decellularization of homograft vascular grafts for use in vascular surgery. Materials and Methods. The biomechanical integrity of native and decellularized rat aortas was assessed under uniaxial tension tests. For this purpose, 36 male rats (12 Wistar and 24 Dark Agouti [DA]) were used to excise their abdominal aortas. Twelve of the aortas were tested fresh (Wistar and DA rats), within 24 hours from euthanasia, and the rest were decellularized using a modified protocol (DA rats only). Fresh and decellularized samples (n ¼ 12) were subjected to uniaxial tensile loading to failure, and the recorded stress-strain behaviour of each specimen was assessed in terms of 6 biomechanical parameters. Results. No statistically significant differences were found in any of the biomechanical parameters studied between the decellularized DA rat aorta group and both the native DA and Wistar rat aorta groups (P > .05). Also, no significant difference was shown between the native DA and native Wistar rat aorta groups. Conclusions. The results from this study have shown that the decellularization protocol did not affect the mechanical properties of the native rat aorta. In addition to this, both native Wistar and native/decellularized DA rat aorta groups shared similar mechanical properties.



  • Mechanical, Electrical and Manufacturing Engineering

Published in

Transplantation Proceedings






1228 - 1233


KATSIMPOULAS, M. ... et al., 2015. Investigation of the biomechanical integrity of decellularized rat abdominal aorta. Transplantation Proceedings, 47(4), pp. 1228 - 1233.


© Elsevier BV


VoR (Version of Record)

Publisher statement

This work is made available according to the conditions of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) licence. Full details of this licence are available at:

Publication date



This paper is in closed access.






Logo branding