TCOM_TPS_18_0107.pdf (797.84 kB)

On the performance of multiuser MIMO systems relying on full-duplex CSI acquisition

Download (797.84 kB)
journal contribution
posted on 09.07.2018 by Jawad Mirza, Gan Zheng, Kai-Kit Wong, Sangarapillai Lambotharan, Lajos Hanzo
IEEE In this paper, we propose a combined full duplex (FD) and half duplex (HD) based transmission and channel acquisition model for open-loop multiuser multiple-input multipleoutput (MIMO) systems. Assuming residual self interference (SI) at the BS, the idea is to utilize the FD mode during the uplink (UL) training phase in order to achieve simultaneous downlink (DL) data transmission and UL CSI acquisition. More specifically, the BS begins serving a user when its CSI becomes available, while at the same time, it also receives UL pilots from the next scheduled user. We investigate both zero-forcing (ZF) and maximum ratio transmission (MRT) MIMO beamforming techniques for the DL data transmission in the FD mode. The BS switches to the HD mode once it receives the CSI of all users and it employs ZF beamforming for the DL data transmission until the end of the transmission frame. Furthermore, we derive closedform approximations for the lower bounded ergodic achievable rate relying on the proposed model. Our numerical results show that the proposed FD-HD transmission and channel acquisition approach outperforms its conventional HD counterpart and achieves higher data rates.



  • Mechanical, Electrical and Manufacturing Engineering

Published in

IEEE Transactions on Communications


MIRZA, J. al., 2018. On the performance of multiuser MIMO systems relying on full-duplex CSI acquisition. IEEE Transactions on Communications, 66(10), pp. 4563 - 4577.




AM (Accepted Manuscript)

Publication date



Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.






Logo branding