File(s) not publicly available

Reason: This item is currently closed access.

Optical technique for photovoltaic spatial current response measurements using compressive sensing and random binary projections

journal contribution
posted on 21.07.2016 by Matt Cashmore, George Koutsourakis, Ralph Gottschalg, Simon R.G. Hall
Compressive sensing has been widely used in image compression and signal recovery techniques in recent years; however, it has received limited attention in the field of optical measurement. This paper describes the use of compressive sensing for measurements of photovoltaic (PV) solar cells, using fully random sensing matrices, rather than mapping an orthogonal basis set directly. Existing compressive sensing systems optically image the surface of the object under test, this contrasts with the method described, where illumination patterns defined by precalculated sensing matrices, probe PV devices. We discuss the use of spatially modulated light fields to probe a PV sample to produce a photocurrent map of the optical response. This allows for faster measurements than would be possible using traditional translational laser beam induced current techniques. Results produced to a 90% correlation to raster scanned measurements, which can be achieved with under 25% of the conventionally required number of data points. In addition, both crack and spot type defects are detected at resolutions comparable to electroluminescence techniques, with 50% of the number of measurements required for a conventional scan.

Funding

This work was funded through the European Metrology Research Programme (EMRP) Project ENG55 PhotoClass. The EMRP is jointly funded by the EMRP participating countries within EURAMETand the European Union. This work is co-funded by the UK National Measurement System. This work was supported in part by the Research Councils UK (RCUK) through the project “Stability and Performance of Photovoltaics (STAPP)” (contract no: EP/H040331/1).

History

School

  • Mechanical, Electrical and Manufacturing Engineering

Published in

Journal of Photonics for Energy

Volume

6

Issue

2

Citation

CASHMORE, M. ... et al, 2016. Optical technique for photovoltaic spatial current response measurements using compressive sensing and random binary projections. Journal of Photonics for Energy, 6 (2), 025508.

Publisher

SPIE / © The Authors

Version

VoR (Version of Record)

Publisher statement

This work is made available according to the conditions of the Creative Commons Attribution 3.0 Unported (CC BY 3.0) licence. Full details of this licence are available at: http://creativecommons.org/licenses/by/3.0/

Acceptance date

13/06/2016

Publication date

2016

Notes

This is an Open Access article published by SPIE under a Creative Commons Attribution 3.0 Unported License. Distribution or reproduction of this work in whole or in part requires full attribution of the original publication, including its DOI.

ISSN

1947-7988

Language

en

Licence

Exports

Logo branding

Licence

Exports