Zhao_Real-time optimal energy management of electrified engines.pdf (1.65 MB)

Real-time optimal energy management of electrified engines

Download (1.65 MB)
journal contribution
posted on 21.03.2017, 14:00 by Dezong Zhao, Edward Winward, Zhijia Yang, Richard Stobart, Thomas Steffen
© 2016 The electrification of engine components offers significant opportunities for fuel economy improvements, including the use of an electrified turbocharger for engine downsizing and exhaust gas energy recovery. By installing an electrical device on the turbocharger, the excess energy in the air system can be captured, stored, and re-used. This new configuration requires a new control structure to manage the air path dynamics. The selection of optimal setpoints for each operating point is crucial for achieving the full fuel economy benefits. In this paper, a control-oriented model for an electrified turbocharged diesel engine is analysed. Based on this model, a structured approach for selecting control variables is proposed. A model-based multi-input multi-output decoupling controller is designed as the low level controller to track the desired values and to manage internal coupling. An equivalent consumption minimization strategy is employed as the supervisory level controller for real-time energy management. The supervisory level controller and low level controller work together in a cascade which addresses both fuel economy optimization and battery state-of-charge maintenance. The proposed control strategy has been successfully validated on a detailed physical simulation model.

Funding

This work was co-funded by Innovate UK (formerly the Technology Strategy Board UK),under a grant for the Low Carbon Vehicle IDP4 Programme (TP14/LCV/6/I/BG011L).

History

School

  • Aeronautical, Automotive, Chemical and Materials Engineering

Department

  • Aeronautical and Automotive Engineering

Published in

IFAC-PapersOnLine

Volume

49

Issue

11

Pages

251 - 258

Citation

ZHAO, D. ...et al., 2016. Real-time optimal energy management of electrified engines. IFAC-Papers OnLine, 49(11), pp. 251-258.

Publisher

© IFAC (International Federation of Automatic Control) Published by Elsevier Ltd.

Version

AM (Accepted Manuscript)

Publisher statement

This work is made available according to the conditions of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) licence. Full details of this licence are available at: https://creativecommons.org/licenses/by-nc-nd/4.0/

Publication date

2016-08-21

Copyright date

2016

Notes

This paper was accepted for publication in the journal IFAC-Papers OnLine and the definitive published version is available at http://dx.doi.org/10.1016/j.ifacol.2016.08.038

eISSN

2405-8963

Language

en

Exports