26512.pdf (1.14 MB)

Study of the phase-varying mechanisms of ion current signals for combustion phasing in a gasoline HCCI engine

Download (1.14 MB)
journal contribution
posted on 15.09.2017, 16:13 by Guangyu Dong, Liguang Li, Zhijun Wu, Zhiyong Zhang, Dezong Zhao
The phase-varying mechanism of the ion current observed in a Homogeneous Charge Compression Ignition (HCCI) engine is investigated to achieve ion current-based combustion phasing. By integrating the gasoline flame ionization mechanism with the HCCI combustion model, the mechanisms affecting the ion formation and recombination processes are analyzed, and the relationship between the phases of ion current and combustion event is studied. Modeling results indicate that the formation rate of H 3 O + ions is mainly affected by the combustion boundary conditions. However, the ion recombination rate of H 3 O + ions is mainly dependent on the concentration of these ions. In the presence of the above mechanisms, the phase-varying tendency of the ion current is found to be similar to the variations in the combustion phase, but the offset between these phases will vary when the combustion boundary condition changes. As the equivalence ratio becomes low, the rate of H 3 O + formation is decreased and the ion recombination rate decreases even more, due to the reduced ion concentration. Therefore, the inflection point of the ion current curve, dI max , is retarded even further compared to the combustion phase CA50. In addition, a larger phase offset between dI max and CA50 is observed when the intake temperature is lower. All of the above modeling predictions agree well with the experimental results.

History

School

  • Aeronautical, Automotive, Chemical and Materials Engineering

Department

  • Aeronautical and Automotive Engineering

Published in

Fuel

Volume

113

Pages

209 - 215

Citation

DONG, G. ... et al., 2013. Study of the phase-varying mechanisms of ion current signals for combustion phasing in a gasoline HCCI engine. Fuel, 113, pp.209-215.

Publisher

© Elsevier

Version

VoR (Version of Record)

Publisher statement

This work is made available according to the conditions of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) licence. Full details of this licence are available at: https://creativecommons.org/licenses/by-nc-nd/4.0/

Publication date

2013

Notes

This work was supported by National Basic Research Priorities Program (973) of China under the Grant reference of 2007CB 210005.

ISSN

0016-2361

Language

en

Exports

Logo branding

Keywords

Exports