PhysRevA.69.043804.pdf (1.07 MB)

Superconducting analogs of quantum optical phenomena: macroscopic quantum superpositions and squeezing in a superconducting quantum-interference device ring

Download (1.07 MB)
journal contribution
posted on 08.04.2013 by Mark Everitt, T.D. Clark, P.B. Stiffell, A. Vourdas, J.F. Ralph, R.J. Prance, H. Prance
In this paper we explore the quantum behavior of a superconducting quantum-interference device (SQUID) ring which has a significant Josephson coupling energy. We show that the eigenfunctions of the Hamiltonian for the ring can be used to create macroscopic quantum superposition states of the ring. We also show that the ring potential may be utilized to squeeze coherent states. With the SQUID ring as a strong contender as a device for manipulating quantum information, such properties may be of great utility in the future. However, as with all candidate systems for quantum technologies, decoherence is a fundamental problem. In this paper we apply an open systems approach to model the effect of coupling a quantum-mechanical SQUID ring to a thermal bath. We use this model to demonstrate the manner in which decoherence affects the quantum states of the ring.

History

School

  • Science

Department

  • Physics

Citation

EVERITT, M.J. ... et al., 2004. Superconducting analogs of quantum optical phenomena: macroscopic quantum superpositions and squeezing in a superconducting quantum-interference device ring. Physical Review A, 69 (4), 8 pp.

Publisher

© American Physical Society

Version

VoR (Version of Record)

Publication date

2004

Notes

This article was published in the journal, Physical Review A [© American Physical Society] and the definitive version is available at: http://dx.doi.org/10.1103/PhysRevA.69.043804

ISSN

1050-2947

Language

en

Exports

Logo branding

Keyword(s)

Exports