PTA-heggie-et-al.pdf (1.01 MB)

The Stone-Wales transformation: from fullerenes to graphite, from radiation damage to heat capacity

Download (1.01 MB)
journal contribution
posted on 30.03.2017, 11:05 by Malcolm Heggie, G.L. Haffenden, Chris Latham, T. Trevethan
The Stone-Wales (SW) transformation, or carbon-bond rotation, has been fundamental to understanding fullerene growth and stability, and ab initio calculations show it to be a high-energy process. The nature and topology of the fullerene energy landscape shows how the Ih-C60 must be the final product, if SW transformations are fast enough, and various mechanisms for their catalysis have been proposed. We review SW transformations in fullerenes and then discuss the analogous transformation in graphite, where they form the Dienes defect, originally posited to be a transition state in the direct exchange of a bonded atom pair. On the basis of density functional theory calculations in the local density approximation, we propose that non-equilibrium concentrations of the Dienes defect arising from displacing radiation are rapidly healed by point defects and that equilibrium concentrations of Dienes defects are responsible for the divergent ultra-high-temperature heat capacity of graphite. This article is part of the themed issue Fullerenes: past, present and future, celebrating the 30th anniversary of Buckminster Fullerene.

Funding

M.I.H., G.L.H. and C.D.L. were funded by British Energy Generation and M.I.H. and C.D.L. are funded by EDF Energy Generation. T.T. is funded by Innovate UK.

History

School

  • Science

Department

  • Chemistry

Published in

Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences

Volume

374

Issue

2076

Citation

HEGGIE, M. ... et al., 2016. The Stone-Wales transformation: from fullerenes to graphite, from radiation damage to heat capacity. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 374 (2076), 13pp.

Publisher

©The Author(s) Published by the Royal Society

Version

AM (Accepted Manuscript)

Publisher statement

This work is made available according to the conditions of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) licence. Full details of this licence are available at: https://creativecommons.org/licenses/by-nc-nd/4.0/

Acceptance date

06/06/2016

Publication date

2016

Notes

This article was published in the Philosophical transactions of the Royal Society of London. Series A: Mathematical and physical sciences and the definitive version is available at: http://dx.doi.org/10.1098/rsta.2015.0317

ISSN

1364-503X

Language

en

Exports

Logo branding

Exports