JMBBM for LUPIN.pdf (1.16 MB)

Through-thickness stress relaxation in bacterial cellulose hydrogel

Download (1.16 MB)
journal contribution
posted on 04.02.2016, 11:52 by Xing Gao, Piotr Kusmierczyk, Zhijun Shi, Changqing Liu, Guang Yang, Igor Sevostianov, Vadim Silberschmidt
Biological hydrogels, e.g. bacterial cellulose (BC) hydrogel, attracted increasing interest in recent decades since they show a good potential for biomedical engineering as replacements of real tissues thanks mainly to their good biocompatibility and fibrous structure. To select potential candidates for such applications, a comprehensive understanding of their performance under application-relevant conditions is needed. Most hydrogels demonstrate time-dependent behaviour due to the contribution of their liquid phase and reorientation of fibres in a process of their deformation. To quantify such time-dependent behaviour is crucial due to their exposure to complicated loading conditions in body environment. Some hydrogel-based biomaterials with a multi-layered fibrous structure demonstrate a promise as artificial skin and blood vessels. To characterise and model time-dependent behaviour of these multi-layered hydrogels along their through-thickness direction is thereby of vital importance. Hence, a holistic study combining mechanical testing and micro-morphological observations of BC hydrogel with analytical modelling of its relaxation behaviour based on fraction-exponential operators was performed. The results show a good potential to use a fraction-exponential model to describe such behaviour of multi-layered hydrogels, especially at stages of stress decay at low forces and of stress equilibrium at high forces.

Funding

The partial support from the following grants is gratefully acknowledged: FP7 IRSES project TAMER (Grant no. IRSES-GA- 2013-610547) (XG, PK, IS and VVS); China-European Union Technology Cooperation Programme (Grant no. 1110) (ZS and GY); M6 Project (Grant no. PIRSES-GA-2010-269113) (CL and VVS).

History

School

  • Mechanical, Electrical and Manufacturing Engineering

Published in

Journal of the Mechanical Behavior of Biomedical Materials

Volume

59

Pages

90 - 98

Citation

GAO, X. ... et al., 2016. Through-thickness stress relaxation in bacterial cellulose hydrogel. Journal of the Mechanical Behavior of Biomedical Materials, 59, pp. 90 - 98.

Publisher

© Elsevier Ltd.

Version

AM (Accepted Manuscript)

Publisher statement

This work is made available according to the conditions of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) licence. Full details of this licence are available at: https://creativecommons.org/licenses/by-nc-nd/4.0/

Publication date

2016

Notes

This article was published in the Journal of the Mechanical Behavior of Biomedical Materials and the definitive version is available at: http://dx.doi.org/10.1016/j.jmbbm.2015.12.021

ISSN

1751-6161

eISSN

1878-0180

Language

en

Exports