Loughborough University
Browse
- No file added yet -

3D printed hollow microneedles for treating skin wrinkles using different anti-wrinkle agents: a possible futuristic approach

Download (2.15 MB)
journal contribution
posted on 2023-02-28, 10:21 authored by Humayra Islam, Taslima Sultana Poly, Zarin Tasnim Tisha, Samia Rahman, Ahmed Issa Jahangir Naveed, Alifa Ahmed, Saraf Nawar Ahmed, Jasmin Hassan, Md Jasim Uddin, Diganta DasDiganta Das

Skin wrinkles are an inevitable phenomenon that is brought about by aging due to the degradation of scleroprotein fibers and significant collagen reduction, which is the fundamental basis of anti-wrinkle technology in use today. Conventional treatments such as lasering and Botulinum toxin have some drawbacks including allergic skin reactions, cumbersome treatment procedures, and inefficient penetration of the anti-wrinkle products into the skin due to the high resistance of stratum corneum. Bearing this in mind, the cosmetic industry has exploited the patient-compliant technology of microneedles (MNs) to treat skin wrinkles, developing several products based on solid and dissolvable MNs incorporated with antiwrinkle formulations. However, drug administration via these MNs is limited by the high molecular weight of the drugs. Hollow MNs (HMNs) can deliver a wider array of active agents, but that is a relatively unexplored area in the context of antiwrinkle technology. To address this gap, we discuss the possibility of bioinspired 3D printed HMNs in treating skin wrinkles in this paper. We compare the previous and current anti-wrinkling treatment options, as well as the techniques and challenges involved with its manufacture and commercialization.

History

School

  • Aeronautical, Automotive, Chemical and Materials Engineering

Department

  • Chemical Engineering

Published in

Cosmetics

Volume

10

Issue

2

Publisher

MDPI

Version

  • VoR (Version of Record)

Rights holder

© The authors

Publisher statement

This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

Acceptance date

2023-02-23

Publication date

2023-02-27

Copyright date

2023

ISSN

2079-9284

Language

  • en

Depositor

Dr Diganta Das. Deposit date: 27 February 2023

Article number

41

Usage metrics

    Loughborough Publications

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC