A reactive field force potential has been created in order to model the structural effects of low percentage dopant aluminium in a zinc oxide (ZnO) system. The potential’s parameters were fitted to configurations computed with density functional theory: binding energies were considered for surface structures and for Al in ZnO bulk crystals. Energies for Zn–Al alloys were also considered. Forces were fit to zero for all equilibrium structures and were also fitted for some non-equilibrium structures. As a first application of the model, the energetic deposition (0.1–40 eV) of an aluminium atom onto the polar surface of a ZnO
(
000
1
¯
)
is considered. For low energies the Al atom attaches to two preferred sites on the surface but as the energy increases above ≈15 eV subplantation is preferred at near normal incidence, with high diffusion barriers between stable sites. At these energies, reflection of the Al atom occurs at incident angles above
≈
55
°
.
Funding
Asahi Glass Europe
History
School
Science
Aeronautical, Automotive, Chemical and Materials Engineering
Department
Materials
Mathematical Sciences
Published in
Modelling and Simulation in Materials Science and Engineering
This is an Open Access Article. It is published by IOP Publishing under the Creative Commons Attribution 4.0 International Licence (CC BY 4.0). Full details of this licence are available at: https://creativecommons.org/licenses/by/4.0/