Loughborough University
Browse
FINAL VERSION.pdf (2.48 MB)

A broadband multilayer antireflection coating for thin film CdSeTe/CdTe solar cells

Download (2.48 MB)

Thin film cadmium telluride (CdTe) photovoltaics (PV) is the most successful second-generation PV technology, with a current installed capacity of over 30 GWp, predominantly at utility scale. Recent improvements in the buffer layer of the device, switching from cadmium sulphide (CdS) to transparent magnesium-doped zinc oxide (MZO), tin oxide (SnO2), or zinc oxide (ZnO), and the addition of selenium to the absorber layer, have expanded the wavelength range over which CdTe devices operate, from 400–850 nm to 350–900 nm. These changes have resulted in higher efficiency devices. As a result, an optimized antireflection (AR) coating design is required to improve the efficiency further. A six-layer AR coating of SiO2 and ZrO2, building on a previous four-layer design for CdTe devices, has been designed, modeled, and fabricated on 3.8-mm thick fluorine-doped tin oxide coated TEC™15 substrates, reducing reflection by 3.38% absolute. Electrical measurements of a CdSeTe/CdTe device before and after addition of the AR coating show an increase in short-circuit current density (Jsc) of almost 1 mAcm−2, a relative increase of 3.45%, and a 0.6% increase in the conversion efficiency of the device, from 16.93% to 17.53%, which is a relative increase of 3.54%. Unlike conventional single layer AR coatings this multilayer coating is stable even under the high processing temperatures required in module manufacturing, so could be supplied by glass manufacturers. This newly optimized broadband AR coating on will enable significantly higher conversion efficiencies and help push CdSeTe/CdTe module efficiencies higher.

Funding

A durable and scalable anti-soiling coating for solar modules

Engineering and Physical Sciences Research Council

Find out more...

History

School

  • Mechanical, Electrical and Manufacturing Engineering

Research Unit

  • Centre for Renewable Energy Systems Technology (CREST)

Published in

IEEE Journal of Photovoltaics

Volume

14

Issue

2

Pages

305 - 310

Publisher

Institute of Electrical and Electronics Engineers

Version

  • AM (Accepted Manuscript)

Rights holder

© IEEE

Publisher statement

© 2023 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

Acceptance date

2023-11-30

Publication date

2023-12-25

Copyright date

2023

ISSN

2156-3381

eISSN

2156-3403

Language

  • en

Depositor

Adam Law. Deposit date: 20 December 2023

Usage metrics

    Loughborough Publications

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC