posted on 2015-11-17, 09:49authored byNorazanita Shamsuddin, Chengcheng Cao, Victor Starov, Diganta DasDiganta Das
A well-defined comparative study between stirred dead end and circular crossflow for microfiltration of china clay suspension has been undertaken. The comparisons have been made with respect to convective mass transfer coefficients, permeation and rejection rates, and energy consumption. Similar operating and hydrodynamic conditions were implemented for the comparison. According to our experimental data circular crossflow module was proven to perform better as compared with the stirred dead end system due to the higher mass transfer coefficients, higher permeation rates and lower energy consumption. The mass transfer coefficients observed are comparable to previously found in vortex flow filtration and dead end flow filtration. The presence of Dean vortices in circular crossflow module promotes flow instabilities in the curved channel flow path which reduce concentration polarization effect during the filtration process. The concentration polarization effect however deteriorated due to solute build up (high solute concentration at the membrane surface) and decrease of the shear stress, i.e., the particle lift forces on the membrane surface. This resulted in deposition of particles on the membrane surface. In terms of energy consumption, for the same energy cost the limiting flux reached in circular crossflow is found higher than in stirred dead end unit
History
School
Aeronautical, Automotive, Chemical and Materials Engineering
Department
Chemical Engineering
Published in
Water Science and Technology
Citation
SHAMSUDDIN, N. ...et al., 2016. A comparative study between stirred dead end and circular flow in microfiltration of china clay suspension. Water Science and Technology: Water Supply 16(2), pp.481-492.
Publisher
IWA Publishing
Version
AM (Accepted Manuscript)
Publisher statement
This work is made available according to the conditions of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) licence. Full details of this licence are available at: https://creativecommons.org/licenses/by-nc-nd/4.0/
Publication date
2016
Notes
This paper was accepted for publication in the journal Water Science and Technology: Water Supply and the definitive published version is available at http://dx.doi.org/10.2166/ws.2015.158