Loughborough University
c6cp05436f.pdf (6.46 MB)

A computational study of doped olivine structured Cd2GeO4: local defect trapping of interstitial oxide ions

Download (6.46 MB)
journal contribution
posted on 2016-09-22, 12:44 authored by Adam McSloy, Paul KellyPaul Kelly, Peter R. Slater, Pooja GoddardPooja Goddard
Computational modelling techniques have been employed to investigate defects and ionic conductivity in Cd2GeO4. We show due to highly unfavourable intrinsic defect formation energies the ionic conducting ability of pristine Cd2GeO4 is extremely limited. The modelling results suggest trivalent doping on the Cd site as a viable means of promoting the formation of the oxygen interstitial defects. However, the defect cluster calculations for the first time explicitly suggest a strong association of the oxide defects to the dopant cations and tetrahedral units. Defect clustering is a complicated phenomenon and therefore not trivial to assess. In this study the trapping energies are explicitly quantified. The trends are further confirmed by molecular dynamic simulations. Despite this, the calculated diffusion coefficients do suggest an enhanced oxide ion mobility in the doped system compared to the pristine Cd2GeO4.



  • Science


  • Chemistry

Published in

Physical Chemistry Chemical Physics


MCSLOY, A. ... et al, 2016. A computational study of doped olivine structured Cd2GeO4: local defect trapping of interstitial oxide ions. Physical Chemistry Chemical Physics, 18 (37), pp.26284-26290.


© the Owner Societies 2016. Royal Society of Chemistry


  • AM (Accepted Manuscript)

Publisher statement

This work is made available according to the conditions of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) licence. Full details of this licence are available at: https://creativecommons.org/licenses/by-nc-nd/4.0/

Acceptance date


Publication date



This paper was accepted for publication in the journal Physical Chemistry Chemical Physics and the definitive published version is available at http://dx.doi.org/10.1039/C6CP05436F.




  • en

Usage metrics

    Loughborough Publications