posted on 2018-11-30, 16:17authored byTianyang Qiu, Liguo Zhao, Mo Song
Purpose: The study compared the mechanical behavior of bioresorbable polymeric stents with various designs during deployment, and investigated their fatigue performance under pulsatile blood pressure loading. Methods: Finite element simulations have been carried out to compare the mechanical performance of four bioresorbable polymeric stents, i.e., Absorb, Elixir, Igaki-Tamai and RevaMedical, during deployment in diseased artery. Tri-folded balloon was modelled to expand the crimped stent onto the three-layered arterial wall with plaque. Cyclic diastolic-systolic pressure loading was applied to both stent and arterial wall to study fatigue behavior. Results: Stents with larger U-bend and longer axial strut demonstrate more flexibility but suffer from severe dogboning and recoiling effects. Stress concentrations in the stent, as well as in the plaque and artery, are higher for stents designed with increased rigidity such as those with smaller U-bends and shorter axial struts. Simulations of fatigue deformation for Elixir stent demonstrate that the U-bends, with high stress concentrations, have a potential risk of fatigue failure under pulsatile systolic-diastolic blood pressure as opposed to the counter metallic stents which are normally free of fatigue failure. Conclusion: The structural behaviour of bioresorbable polymeric stent is strongly affected by its design, in terms of expansion, dogboing, recoiling and stress distribution during the deployment process.
Funding
LG Zhao acknowledge the support from the British Heart Foundation (Grant number:
FS/15/21/31424; Title: Towards controlling the mechanical performance of polymeric bioresorbable vascular scaffold during biodegradation) and the Royal Society of UK (Grant number: IE160066; Title: Evaluating the Performance of Additively
Manufactured Endovascular Scaffolds).
History
School
Aeronautical, Automotive, Chemical and Materials Engineering
Department
Materials
Published in
Cardiovascular Engineering and Technology
Volume
10
Issue
1
Pages
46–60
Citation
QIU, T., ZHAO, L. and SONG, M., 2018. A computational study of mechanical performance of bioresorbable polymeric stents with design variations. Cardiovascular Engineering and Technology, 10 (1), pp.46–60.
This is a post-peer-review, pre-copyedit version of an article published in Cardiovascular Engineering and Technology. The final authenticated version is available online at: https://doi.org/10.1007/s13239-018-00397-9