posted on 2016-02-09, 13:26authored byAlessandro Schiavone, Liguo Zhao
Finite element simulations of stent deployment were carried out by considering the intrinsic anisotropic behaviour, described by a Holzapfel-Gasser-Ogden (HGO) hyperelastic anisotropic model, of individual artery layers. The model parameters were calibrated against the
experimental stress-stretch responses in both circumferential and longitudinal directions. The results showed that stent expansion, system recoiling and stresses in the artery layers were greatly affected by vessel anisotropy. Following deployment, deformation of the stent was also modelled by applying relevant biomechanical forces, i.e. in-plane bending and radial compression, to the stent-artery system, for which the residual stresses generated during
deployment were particularly accounted for. Residual stresses were found to have a significant influence on the deformation of the system, resulting in a re-distribution of stresses and a change of the system flexibility. The results were also utilised to interpret the mechanical performance of stent after deployment.
Funding
The research leading to these results received funding from the European Union Seventh
Framework Programme (FP7/2007-2013) under grant agreement No. PIRSES-GA-2013-
610547 TAMER.
History
School
Mechanical, Electrical and Manufacturing Engineering
Published in
Materials Science and Engineering: C Materials for Biological Applications
Citation
SCHIAVONE, A. and ZHAO, L., 2016. A computational study of stent performance by considering vessel anisotropy and residual stresses. Materials Science and Engineering: C Materials for Biological Applications, 62, pp.307-316.
This work is made available according to the conditions of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) licence. Full details of this licence are available at: https://creativecommons.org/licenses/by-nc-nd/4.0/
Publication date
2016
Notes
This paper was accepted for publication in the journal Materials Science and Engineering: C Materials for Biological Applications and the definitive published version is available at http://dx.doi.org/10.1016/j.msec.2016.01.064.