AS 4th paper accepted version.pdf (3.76 MB)
Download file

A computational study of stent performance by considering vessel anisotropy and residual stresses

Download (3.76 MB)
journal contribution
posted on 09.02.2016, 13:26 authored by Alessandro Schiavone, Liguo ZhaoLiguo Zhao
Finite element simulations of stent deployment were carried out by considering the intrinsic anisotropic behaviour, described by a Holzapfel-Gasser-Ogden (HGO) hyperelastic anisotropic model, of individual artery layers. The model parameters were calibrated against the experimental stress-stretch responses in both circumferential and longitudinal directions. The results showed that stent expansion, system recoiling and stresses in the artery layers were greatly affected by vessel anisotropy. Following deployment, deformation of the stent was also modelled by applying relevant biomechanical forces, i.e. in-plane bending and radial compression, to the stent-artery system, for which the residual stresses generated during deployment were particularly accounted for. Residual stresses were found to have a significant influence on the deformation of the system, resulting in a re-distribution of stresses and a change of the system flexibility. The results were also utilised to interpret the mechanical performance of stent after deployment.

Funding

The research leading to these results received funding from the European Union Seventh Framework Programme (FP7/2007-2013) under grant agreement No. PIRSES-GA-2013- 610547 TAMER.

History

School

  • Mechanical, Electrical and Manufacturing Engineering

Published in

Materials Science and Engineering: C Materials for Biological Applications

Citation

SCHIAVONE, A. and ZHAO, L., 2016. A computational study of stent performance by considering vessel anisotropy and residual stresses. Materials Science and Engineering: C Materials for Biological Applications, 62, pp.307-316.

Publisher

© Elsevier

Version

AM (Accepted Manuscript)

Publisher statement

This work is made available according to the conditions of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) licence. Full details of this licence are available at: https://creativecommons.org/licenses/by-nc-nd/4.0/

Publication date

2016

Notes

This paper was accepted for publication in the journal Materials Science and Engineering: C Materials for Biological Applications and the definitive published version is available at http://dx.doi.org/10.1016/j.msec.2016.01.064.

ISSN

0928-4931

Language

en