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Abstract: Solute transport simulations are important in water pollution events. This paper introduces a finite volume Godunov- 
type model for solving a 4×4 matrix form of the hyperbolic conservation laws consisting of 2D shallow water equations and 
transport equations. The model adopts the Harten-Lax-van Leer-contact (HLLC)-approximate Riemann solution to calculate the 
cell interface fluxes. It can deal well with the changes in the dry and wet interfaces in an actual complex terrain, and it has a strong 
shock-wave capturing ability. Using monotonic upstream-centred scheme for conservation laws (MUSCL) linear reconstruction 
with finite slope and the Runge-Kutta time integration method can achieve second-order accuracy. At the same time, the intro-
duction of graphics processing unit (GPU)-accelerated computing technology greatly increases the computing speed. The model is 
validated against multiple benchmarks, and the results are in good agreement with analytical solutions and other published nu-
merical predictions. The third test case uses the GPU and central processing unit (CPU) calculation models which take 3.865 s and 
13.865 s, respectively, indicating that the GPU calculation model can increase the calculation speed by 3.6 times. In the fourth test 
case, comparing the numerical model calculated by GPU with the traditional numerical model calculated by CPU, the calculation 
efficiencies of the numerical model calculated by GPU under different resolution grids are 9.8–44.6 times higher than those by 
CPU. Therefore, it has better potential than previous models for large-scale simulation of solute transport in water pollution 
incidents. It can provide a reliable theoretical basis and strong data support in the rapid assessment and early warning of water 
pollution accidents. 
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1  Introduction 
 

In recent years, many flash floods caused by 
severe rainstorms have occurred. For instance, in 

March 2019, during a period of heavy rain, a severe 
storm occurred in Papua Province in Indonesia, and 
the massive flood claimed 63 lives. In July 2012, an 
unpredictable rainstorm killed 79 people in Beijing, 
China. Flash floods caused by such heavy rains occur 
frequently around the world. Because of the acute-
ness and unpredictability of heavy rains, they bring 
tremendous damage to human life and economy. The 
impact of flash floods on cities is extremely im-
portant (Barredo, 2007; Roccati et al., 2019; Bayazıt 
et al., 2021). In cities, such flood events can destroy 
chemical plants and wastewater treatment plants. 
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Such an event may threaten the water safety of urban 
and rural residents and affect the water quality of 
downstream rivers and lakes. Understanding the 
contaminant transport process is thus of fundamental 
and practical importance in hydraulic and environ-
mental engineering (Wang and Cheng, 2002; Zhao et 
al., 2007; Zhang et al., 2010; Duarte et al., 2013). 
Under these circumstances, a strong and efficient 
model is needed to predict the track of point-source 
pollutants transported by flood-driven water. 

Water pollution incidents have occurred fre-
quently, causing the deterioration of water quality in 
rivers and lakes, leading to serious eutrophication, 
and threatening the survival of fish (Tao et al., 2012; 
Li et al., 2018; Chen et al., 2021). Because of frequent 
pollution incidents, mastering the process of pollutant 
transport in water bodies plays an important role in 
water conservancy projects and environmental and 
ecological engineering (Kachiashvili et al., 2007; Liu, 
2011; Zhang, 2011; Bi et al., 2013; Tang et al., 2015). 
Through the establishment of high-efficiency and 
high-precision numerical models, the hazard range 
and duration of water pollution accidents can be 
quickly determined, and then effective measures can 
be taken to reduce the harm caused by the accident. 
The surface hydrodynamic process is mathematically 
described by a 2D shallow water equation, and a 
shallow water solver is used to establish an efficient 
and high-precision numerical model to study its mo-
tion (Audusse and Bristeau, 2003; Murillo et al., 2009; 
Hou et al., 2018a; Dong, 2020). However, the 
Boltzmann equation can also be used to establish 
numerical models for many fluid mechanics problems 
(Aidun and Clausen, 2010; La Rocca et al., 2015; Liu 
et al., 2020; Venturi et al., 2021). The advantage of 
this method is that it does not require the solution of 
large-scale nonlinear partial differential equations, 
which considerably simplifies the calculations. La 
Rocca et al. (2020), using discrete Boltzmann equa-
tions, developed a method for simulating transcritical 
shallow water flow, and verified the validity of the 
model through numerical and experimental results. 
Many shallow-water solute transport models have 
been reported in recent years and most of these adopt 
the Goundnov-type scheme to establish a robust nu-
merical model. For example, Begnudelli and Sanders 
(2006) proposed a high-resolution unstructured grid 
finite volume algorithm for simulating 2D unsteady 
water flow and material transport, and analyzed the 

effects of different slope limiters on its calculation 
accuracy and efficiency. Benkhaldoun et al. (2007) 
established a self-adaptive mesh-based pollutant 
transport model with high computational accuracy, 
but the scheme did not fully satisfy total variation 
diminishing (TVD) characteristics. Kong et al. (2013), 
based on a high-precision finite volume model that 
solves the transport motion equation on an unstruc-
tured grid, used the operator-splitting method to cal-
culate the material convection flux and introduced a 
gradient limiting factor to ensure the TVD character-
istics of the calculation format and to reduce the nu-
merical oscillation caused by the large concentration 
gradient of the material. Petti and Bosa (2007) de-
veloped an accurate 2D Eulerian numerical method 
for the prediction of pollutant transportation in a nat-
ural water body. Their model uses a non-uniform grid 
to discretize the computational domain, which may 
pose challenges to large-scale calculations. Thus, it is 
not easy to design an accurate and efficient numerical 
model for solving shallow water and solute transport 
equations. At the same time, the problems of a large 
amount of calculations and a low calculation effi-
ciency must be faced (Song et al., 2014). Efficient and 
accurate numerical modelling thus provides a signif-
icant tool for environmental impact management and 
water project design for water pollution incidents. 

In this study, the authors aim to resolve the 
shallow flow-driven solute transport problem by con-
sidering all the above challenging issues and pre-
senting a graphics processing unit (GPU)-accelerated 
model for dry-bed simulations over a complex do-
main. The model solves a 4×4 matrix form of the 
hyperbolic conservation laws consisting of 2D shal-
low water and solute transport equations. The mon-
otonic upstream-centred scheme for conservation 
laws (MUSCL) format, with second-order spatio-
temporal precision, was used to ensure calculation 
accuracy and avoid numerical oscillation (Hou et al., 
2014). Second-order spatial reconstruction and non- 
negative depth reconstruction methods improve the 
accuracy of the model and meet the TVD character-
istics (Hou et al., 2013a). The accuracy and efficiency 
of the model are tested by several cases. The numer-
ical format provides a well-balanced solution and 
maintains non-negative water depth and solute con-
centration in applications involving wet and dry 
complex areas. The model ensures computational 
accuracy while increasing computational efficiency. 
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Therefore, it has better potential than previous models 
for large-scale simulation of problems in the real 
world. 
 
 
2  Governing equations and numerical 
methods 

2.1  Shallow water equation and transport equation 

Shallow flow hydrodynamics and passive solute 
concentration transport are described by the shallow 
water equation and the depth-averaged advection- 
diffusion equation, respectively. In vector form, the 
shallow water and advection-diffusion equations may 
be written as a 4×4 matrix: 

 

,
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∂ ∂ ∂
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where t is the time; x and y are the Cartesian coordi-
nates; q is the flow variable vector; F and G are the 
flux vectors in the x and y directions, respectively; S 
denotes the vector of the source terms. The vectors 
may be given as follows: 
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where h is the water level; u and v are the depth- 

averaged velocity components in the x and y direc-
tions, respectively; C represents the solute concen-
tration; qx=uh and qy=vh are the unit-width discharge 
in the two Cartesian directions; hC is the solute 
volume per unit area; g represents the acceleration 
due to gravity; zb is the bed elevation; Cf is the bed 
roughness coefficient determined by the Manning 
coefficients n and h, which has the form gn2/h1/3; Dx 
and Dy are the x and y components of the solute dif-
fusion coefficient D, respectively; qin is the flow in-
tensity of the point-source solute; Cin is the average 
concentration of the solute perpendicular to the 
point-source. In addition, the water level η, which 
equals h+zb, is also used in this study. 

2.2  Numerical method 

2.2.1  Finite volume model 

Using the cell-centred finite volume method, the 
integral form of Eq. (1) over a control cell is written 
as 
 

d d d ,
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where Ω is the volume of the control cell. Applying 
the divergence theorem, Eq. (3) becomes 
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where Γ  is the boundary of the grid; n is the normal 
vector outside the unit perpendicular to the boundary 
of the grid and is defined by (nx, ny)T; F(q)·n is the 
flux at the grid boundary and is expressed as 
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The line integral for the F(q)·n total edges of the 
square grid are expressed by algebraic equations as  
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where k is the index length of a side of a cell; lk is the 
side length of the kth side of the cell; nb is the number 
of cell boundaries; Fk(qn) is the interface flux of the 
four interfaces of the unit grid–east, west, south, and 
north–including the mass flux, momentum flux, and 
solute flux; nk is the outer normal direction of the four 
interfaces. 

In Eq. (4), the first term on the time derivative 
uses the difference method. From time n to time n+1, 
the q value of the cell is updated to 
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where q=[h, qx, qy, hC]T is a conservation variable; 
these include water depth variables, flow variables, 
and solute variables; Δt  is the calculation time step, 
which needs to meet the Courant-Friedrichs-Lewy 
(CFL) condition limit. The detailed calculation pro-
cess is described in reference (Hou et al., 2013a); F is 
the hydrodynamic transport flux; S is the source term 
approximation, which includes the bottom slope 
source term and friction source term; for the specific 
processing method, please refer to Hou et al. (2013b). 
When updating the solute concentration, a minimum 
water depth should be set (10-6 m in this study). When 
the cell grid water depth is less than the minimum 
water depth, the solute concentration is 0. 

To obtain a second-order numerical scheme with 
a time factor, the Runge-Kutta time integration 
method is employed, and the time-matching Eq. (7) 
may be rewritten as 
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where n

i
∗q  is the intermediate flow variable: 
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iK ∗q  is the Runge-Kutta coefficient, defined 
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2.2.2  Flux calculation 

The model uses the Harten-Lax-van Leer-contact 
(HLLC)-approximate Riemann solver to calculate the 
hydrodynamic force and transport flux, which has a 
strong ability to capture shock waves. It was imple-
mented successfully in (Liang, 2010; Hou et al., 
2013a, 2014, 2018b). This method can effectively 
mitigate situations of excessive numerical damping or 
severe numerical oscillation caused by the transport 
advection term. It can deal well with the changes in 
the dry and wet interfaces in an actual complex terrain. 
In this study, the coupled shallow water and advec-
tion-diffusion equations are considered, and hence, 
the HLLC solver should be used. Here, to calculate 
the grid edge fluxes, e Fk(q)·nk can be obtained with 
this solver as (Kawahara and Umetsu, 1986) 
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where FL=F(qL)·nk and FR=F(qR)·nk are calculated 
from the left and right Riemann states; SL, SM, and SR 
are the left, middle, and right wave speeds, respec-
tively; F*L and F*R are the fluxes in the left and right 
middle regions of the HLLC solution structure and are 
calculated as 
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where v and C indicates the tangential velocity and 
substance concentration, respectively. F*L and F*R are 
calculated from the Harten-Lax-van Leer formula 
(Harten et al., 1983): 
  

( )R L L R R L R L
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−
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where SL, SM, and SR are the left, middle, and right 
wave speeds in the HLLC Riemann solution structure. 
Fraccarollo and Toro (1995) recommended the fol-
lowing formulae for estimating SL, SM, and SR to fa-
cilitate applications in wetting and drying: 
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For the middle wave speed SM, Toro (2001) suggested 
the following choice: 
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In Eqs. (14)–(16), uL, uR, hL, and hR are the velocity 
and depth components of the left and right Riemann 
states, respectively, and u* and h* can be evaluated 
from (Toro, 2001) 
 

( ) ( )L R L R0.5 ,u u u gh gh∗ = + + −           (17) 

and 

( ) ( ) 2
L R L R1 0.5 0.25 .∗ = + + −  h g gh gh u u    (18) 

 
In summary, based on the finite volume method 

in the Godunov format, the HLLC-approximate 
Riemann solver is used to obtain the coupled solution 
of the water flow and solute transport flux. In all the 
test cases considered in this study, two types of 
boundary conditions, i.e. an open boundary and a 
closed boundary, are used. The boundary conditions 
are controlled by flux calculations at the boundary 
(Hou et al., 2013b). The solute advection process 
simulation adopts the second-order explicit TVD 
scheme with limiter to control the numerical error, 
which reduces the numerical dissipation and numer-
ical oscillation caused by the advection term of the 
transport equation; the implementation is detailed in 
the authors’ previous studies (Hou et al., 2012, 2015). 

2.2.3  GPU-accelerated computing 
 
The dynamic wave methods and Godunov-type 

schemes have been successfully applied in many 
studies, but the available computing power limits 
their application in many areas of high-resolution 
representation. The GPU parallel computing tech-
nique offers a new approach to such simulations. The 
GPU’s highly parallel structure makes it more effi-
cient than central processing units (CPUs) for algo-
rithms. The compute unified device architecture 
(CUDA) programming language is used to imple-
ment the GPU parallel computing technique. The 
CUDA programming model uses the CPU as the host 
and the GPU as the coprocessor or device. The CPU 
is responsible for processing logical transactions and 
serial calculations. The GPU is responsible for per-
forming parallel processing tasks. When the model 
starts to run calculations, data is first read into the 
host (main memory), and then the data of the grid 
information, initial boundary conditions, calculation 
parameters, etc. are initialized in each cell. The 
corresponding GPU device space is allocated to 
copy the data to the device (video memory). After 
the computation is completed, the result is syn-
chronously copied back to the main memory. The 
implementation is detailed in the authors’ previous 
studies (Smith and Liang, 2013; Liang et al., 2016; 
Hou et al., 2020). The successful and efficient im-
plementation of the GPU computing technique is 
shown in Fig. 1. If the data exchange between CPU 
memory and GPU memory is too frequent, the data 
exchange delay will reduce program performance. 
Therefore, to avoid frequent data exchange in the 
output process of the results, the calculation time is 
extended. In the calculation of efficiency compari-
son in this study, the results will be output only after 
the simulation ends. 
 
 
3  Results and discussion 
 

The proposed numerical scheme for shallow 
flow-driven solute transport is validated against 
several benchmark tests and results and alternative 
numerical predictions, using different types of  
GPU computers for large-scale calculations, and  
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comparing the results with those of CPU calcula-
tions. The Courant number for the CFL condition is 
set to 0.5, and g=9.81 m/s2 and ρ=1000 kg/m3. The 
solute is assumed to maintain the same density as 
water.  

3.1  Pure solute advection verification 

The first test case is characterized by advection 
of solute clouds in a stable uniform flow. The model is 
verified by advection in a uniform flow field using a 
square solute cloud. The assumed computing domain 
is an open channel with a slope of 10°, a length of 
1000 m, and a width of 200 m. The computational 
domain covering the channel is divided into 
1000×200 cells with a size of 1 m×1 m. The left and 
right boundaries are the inflow and free outflow 
conditions. The north and south boundaries are set to 
closed. In the whole domain, a constant flow field is 
achieved by setting the hydrodynamic parameters. 
That is, a depth of 0.1 m is imposed in the computa-
tional domain. The 40 m×40 m solute cloud is placed 
in the channel with a central coordinate x=100 m. The 
value of the concentration for the solute cloud is as-
sumed to be 3 mg/L. If the transport solute performs 
only advection motion on the water flow, the advec-
tion motion control equation is given as 
 

( ) ( ) ( ) 0.
hC huC hvC
t x y

∂ ∂ ∂
+ + =

∂ ∂ ∂
            (19) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
These conditions are also shown in Fig. 2a. A 

simulation time step of 1 s and a total time of 2000 s 
are adopted in this case. The contour and position 
distributions of the simulated solute cloud transport 
results at t=600 s and t=1000 s are shown in Figs. 2b 
and 2c, respectively. Theoretically, due to the neglect 
of the diffusion term, the solute cloud maintains its 
initial profile and concentration at all times in the 
flow field. However, numerical dissipation is inevi-
table. Although numerical dissipation still exists, 
Fig. 2 shows that the dissipation is very small and that 
the concentration field deformation is relatively small. 
Therefore, the advection term processing method 
used in this model has a high accuracy and can 
achieve a high accuracy in practical applications. 

3.2  Simulation of solute diffusion under hydro-
static conditions 

3.2.1  Setting the initial conditions of the model 

The characteristic of this test case is the diffusion 
of solute clouds under hydrostatic conditions. The 
harmony of the model and the appropriateness of the 
solute diffusion term are verified. With h=1 m, u=0, 
and v=0, the 2D diffusion equation for this idealised 
case is given as 
 

( ) = .x y

hC C CD h D h
t x x y y

∂  ∂ ∂ ∂ ∂  +   ∂ ∂ ∂ ∂ ∂   
        (20) 

Fig. 1  Flowchart of the computation using GPUs 
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This test case is similar to the transport problem 
with Gaussian distribution of concentration peaks 
(Shao et al., 2012). The length and width of the cal-
culation domain are 75 m and 30 m, respectively. The 
computational domain is divided into 150×60 cells 
with a size of 0.5 m×0.5 m and a frictionless domain 
with a horizontal bed. The simulation is calculated 
with the time step Δt=1 s, and the total calculation 
time is 300 s. In the whole calculation process, the 
four boundaries are closed boundaries, with the initial 
condition of concentration given as 
 

2

2
0

( 37.5)( , , 0) exp ,
2σ

 −
= − 

 

xC x y              (21) 

 
where σ0 is the standard deviation of the Gaussian 
distribution and is set to 1 m. 

The analytical solution of the solute concentra-
tion distribution at any time is 
 

2
0

2

( )( , , ) exp ,
2

σ
σ σ

′ −
= − 

 

x xC x y t              (22) 

 

where 2 2
0= 2 ,σ σ + tD  

0
37.5 ( )d ,τ τ′ = + ∫

t
x u  and the 

diffusion coefficient Dt in the x direction is set to 0 
m2/s, 0.1 m2/s, 0.3 m2/s, and 0.5 m2/s. 

To quantitatively analyze the simulation results, 
error method diagnostics are employed to measure the 
accuracy. The lower the ERR is, the closer the result is 
to the exact solution. Ci and Cexact are defined as the 
numerical and exact solutions, respectively, and ERR 
is defined as 
 

c

exact
c

1ERR ,
k

i
i

C C
k

= −∑                     (23) 

 
where i is the cell number, and kc denotes the total 
number of cells. 

3.2.2  Discussion of the simulation results and accu-
racy analysis 

Fig. 3 shows the results at t=300 s. During the 
long calculation period, the calculated water level of 
the model does not change and remains at 1 m, which 
is consistent with the analytical solution; the flow 
velocity is always maintained at 0. Therefore, the 
model has good harmony, and no false flow occurs. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

The concentration peak transport process is 
calculated for diffusion coefficients D of 0 m2/s, 
0.1 m2/s, 0.3 m2/s, and 0.5 m2/s. A comparison of the 
numerical solution and the analytical solution at 
t=10 s is shown in Fig. 4. Fig. 4a shows the results of 
D=0 m2/s (the initial concentration distribution). The 
numerical method in this study can also obtain stable 
and reasonable results, and the calculated results be-
fore and after the solute cloud concentration peak are 
in good agreement with the analytical solution. 
Figs. 4b–4d show that as the diffusion coefficient 
increases, the concentration peak decreases, the dis-
tribution width increases, the concentration peak 

Fig. 3  Solute diffusion under hydrostatic conditions: 
comparison of the numerical and analytical water surface 
elevations along the x direction at the centre of the com-
puted domain line at t=300 s 
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Fig. 2  Initial computational domain (a), and the solute 
cloud locations with a constant concentration profile at 
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becomes increasingly flat, and the numerical solution 
and analytical solution are better fitted. Table 1 shows 
that the error is small at different times under different 
diffusion conditions. It is clear that the numerical 
method adopted maintains the highest accuracy by 
holding the closest shape to the analytical result. This 
indicates that the model can effectively reduce nu-
merical damping and has high precision and good 
stability. 

3.3  Simulation of dam-break flow and solute 
transport with uniform concentration 

Proposed by Kawahara and Umetsu (1986), this  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

case is often used to check the calculation accuracy of 
the model and the effectiveness of the dynamic dry 
and wet boundary treatment. The calculation domain 
is a rectangular area of 75 m×30 m, and the bottom 
topography is calculated by  
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(24) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 1  ERRs of 2D diffusion equations 

Diffusion coefficient 
ERR (×10−3) 

t=0 s t=5 s t=10 s t=15 s t=20 s t=25 s t=30 s 
D=0 m2/s 0.079 0.079 0.079 0.079 0.079 0.079 0.079 
D=0.1 m2/s 0.018 0.098 0.472 0.550 0.578 0.576 0.578 
D=0.3 m2/s 0.018 0.500 0.052 0.631 0.645 0.842 1.000 
D=0.5 m2/s 0.080 0.476 0.078 0.816 0.976 1.050 1.330 
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Fig. 4  Solute diffusion under hydrostatic conditions: the concentration curve along the x direction, comparing the nu-
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An infinitely thin dam is located at x=16 m, and 
divides the area into an upstream reservoir and a 
downstream dry flood area. The still water depth 
upstream of the dam is 1.75 m. It is contaminated by a 
solute mixture with a concentration of 1 mg/L. The 
Manning roughness coefficient n=0.018 s/m1/3 is 
assumed throughout the domain. The computational 
domain is discretized into 150×60 regular square 
grids. The four side walls are closed boundaries. The 
movement of the solute does not consider material 
diffusion or degradation during transport. We assume 
that the dam is removed immediately at t=0, and that 
the total duration of the entire simulation calculation 
is 300 s. 

Fig. 5 shows the results at t=2 s in terms of a 3D 
surface plot and contours for both water depth and 
solute distribution. After the dam break, the polluted 
water rushes into the downstream area, and at t=2 s, 
the flood front reaches two small humps and begins to 
climb. Theoretically, because diffusion is neglected, 
the concentration of the solute is always 1 mg/L in the 
wet region and 0 in the dry region. The simulation 
results are consistent with the facts, as shown in 
Figs. 5c and 5d. Therefore, the solute concentrations 
at the dry and wet edges are correctly simulated, and 
no obvious numerical diffusion is observed. Due to 
the large momentum generated by the dam break, the 
water continues to flow downstream rapidly. The  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

dam-break water infiltrates and passes through the 
two small humps after t=6 s, as shown in Fig. 6. After 
hitting the large hump, the water begins to climb up 
the large hump. Due to the blocking effect of the large 
hump, only part of the water can pass through the 
boundary wall near the southern and northern ends of 
the large hump and continue to flow downstream; this 
flow direction is shown in Fig. 6e. The leading edge 
of the solute concentration coincides with the dry-wet 
interface. A reliable and effective numerical model is 
established. As shown in Fig. 7, at t=12 s, the 
dam-break water flows downstream through the front 
portion of the large hump to reach the downstream 
end of the calculation area. Due to the interaction 
between the dam-break water and the hump, a shock 
wave in the opposite direction is generated, and the 
water flow propagates both downstream and to the 
upstream boundary, as shown in Fig. 7e. Fig. 8 (p.011) 
shows the results at t=30 s. It can be seen from the 
figure that the current reaches the eastern boundary. 
Since the dam-break wave collides with the east 
boundary to generate waves in the opposite direction, 
the water flow moves upstream, as shown in Fig. 8e. 
This wave-topography-boundary interaction contin-
ues until the momentum of the dam break is dissi-
pated by the bed friction. Eventually, the flow be-
comes static once more, where the tops of the three 
humps are dry again. The Godunov-type scheme is  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 5  Dam-break flood evolution: numerical results at t=2 s 
(a) 3D plot of water surface; (b) Water depth contours; (c) 3D surface plot of solute concentration; (d) Contours of solute  
concentration 
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Fig. 6  Dam-break flood evolution: numerical results at 
t=6 s 
(a) 3D plot of water surface; (b) Water depth contours; (c) 3D 
surface plot of solute concentration; (d) Contours of solute 
concentration; (e) Water flow velocity distribution 

Fig. 7  Dam-break flood evolution: numerical results at 
t=12 s 
(a) 3D plot of water surface; (b) Water depth contours; (c) 3D 
surface plot of solute concentration; (d) Contours of solute 
concentration; (e) Water flow velocity distribution 
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observed to correctly capture the complex flow pat-
terns induced by the dam-break wave (shock) inter-
acting with the three humps and the domain bounda-
ries. The numerical results are the same as those re-
ported by Liang (2010) on a uniform grid and those 
reported on the adaptive grid by Zhang et al. (2015). 
For the GPU and CPU high-resolution numerical 
models on an NVIDIA Tesla M 1080 GPU computer, 
it took 3.875 s and 13.875 s, respectively, to complete 
the 300-s dam water flow evolution process on 9000 
computing grids. Liang (2010) and Zhang et al. (2015) 
reported that the time required to complete the simu-
lation on 16 000 uniform grids or adaptive grids was 
277.3 s and 101 s, respectively. Therefore, for this 
more practical simulation calculation, the GPU’s 
parallel computing efficiency is more obvious and it 
maintains a similar accuracy. 

3.4  Point-source solute transport driven by the 
Malpasset dam break 

The French Malpasset dam was built in 1956, 
had a maximum storage capacity of 5.5×107 m3, and 
was mainly used for agricultural irrigation and urban 
water use. Due to continuous heavy rain at the end of 
November, 1959, the Malpasset dam water level rose 
rapidly in a short period of time. The dam finally 
broke at 21:14 on December 2, and the dam break 
was rapid. It can be considered a transient dam sepa-
rating the Malpasset reservoir and the downstream 
terrain, as shown in Fig. 9. The dam-break water 
flows rapidly downstream and eventually enters the 
sea. The sea surface elevation is 0 m, the water level 
upstream of the dam before the dam break is 100 m, 
and the downstream water depth is 0 m. Hypothetical  
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 8  Dam-break flood evolution: numerical results at 
t=30 s 
(a) 3D plot of water surface; (b) Water depth contours; (c) 3D 
surface plot of solute concentration; (d) Contours of solute 
concentration; (e) Water flow velocity distribution 
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point source given by qin=1 m/s and Cin=1 mg/L is 
set at (9281 m, 5244 m). The solute diffusion coef-
ficient is 0.5 m2/s, and the river Manning coefficient 
is taken as 0.033 s/m1/3. The terrain data use digital 
elevation model (DEM) data with a resolution of 
10 m (1.5 million square grid cells). The GPU- 
accelerated high-resolution model is used to simu-
late the dam-break water flow evolution that drives 
the solute transport process, and the simulation time 
is 3000 s. 

Fig. 10 shows the results at t=1000 s and t= 
1800 s in terms of water depth. After the dam break, 
the water flow rapidly evolves downstream and then 
reaches the downstream plain, as shown in Fig.10b. 
The numerical simulation results are the same as 
those reported by Hou et al. (2013b) for the 
dam-break water flow evolution on unstructured grids. 
The Godunov scheme can correctly capture the com-
plex flow caused by the interaction of dam-break 
waves with the complex terrain. Fig. 11 shows the 
results of the solute concentration distribution at dif-
ferent times. After the simulation starts, the flood 
reaches the solute release source at t=900 s, as shown 
in Fig. 11a. After t=900 s, the solute is transported to 
low-lying places with the flood. During the simula-
tion, it was observed that the water depth profile 
matches the solute distribution profile, which indi-
cates that drastically changing floods can cause 
large-scale water pollution and rapidly affect down-
stream water bodies after destroying solute-releasing 
facilities. At all output times, the solute transport 
process of the flood-driven point source is very sim-
ilar to that obtained by Cao et al. (2019). 

3.5  Simulations for different grid resolutions and 
their efficiencies 

Different resolutions of the Malpasset terrain 
were used to simulate the dam-break flood-driven 
point-source solute transport based on the test case in 
Section 3.4. The elaborate computational grid leads to 
an increase in the number of grid squares, which se-
riously affects the calculation efficiency of the model 
and may even make it impossible to perform 
large-scale computing. To obtain GPU acceleration 
technology that can achieve large-scale and high- 
efficiency calculations, uniform cell size grids of 
2 m×2 m, 5 m×5 m, 10 m×10 m, and 15 m×15 m were 

used to simulate the flood-driven point-source solute 
transport processes. When the computational domain 
adopts a square grid with a resolution of 2 m, 5 m, 
10 m, and 15 m, the computational domain is discre-
tized into 39 542 850 cells, 6 326 856 cells, 1 581 714 
cells, and 703 188 cells, respectively. The grid reso-
lution affects the number of computational domain 
grids and thus the total GPU time required to com-
plete the entire simulation. 

To demonstrate the performance of GPU code 
calculation efficiency, a model of CPU calculation 
was used to simulate the same test case, and a CPU 
with four cores was used (Intel Xeon E5-2609/CPU 
(4-core)). Table 2 shows the runtime using different 
grid resolutions on different hardwares. The calcula-
tion time results show that using the NVIDIA Tesla M 
1080 GPU calculations, it only takes 136.19 s to 
complete this flood evolution process event in the 
15-m resolution computing domain, while it takes 
2684.29 s in the 5-m computing domain. Using the 
NVIDIA Tesla P 100 GPU to calculate the 15-m grid 
and 5-m grid to simulate the same event took 59.59 s 
and 1202.33 s, respectively, and it even performed 
calculations on a total of 39 542 850 grids with a res-
olution of 2 m. Therefore, the computation of the 
graphics on the NVIDIA Tesla P 100 GPU was more 
efficient than that of the NVIDIA Tesla M 1080 GPU. 
Simultaneously, this flood evolution event uses ter-
rain data with different grid resolutions, and the GPU 
simulation time was 9.8–44.6 times the CPU time. 
Therefore, in flood-driven point-source solute 
transport events, GPU acceleration can achieve large- 
scale simulation calculations, and play a large role in 
water evaluation of pollution incidents. 
 
 
4  Conclusions 
 

This paper introduces a robust model based on 
GPU acceleration for simulating shallow flow-driven 
solute transport processes. The second-order  
Godunov-type finite volume method is used to nu-
merically solve the integrals of shallow water and 
transport equations. The current model has been ver-
ified against test cases, and the results show that the 
numerical dissipation of solute in transport is very 
small and it can effectively simulate the dry and wet  
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boundary area. The numerical prediction and analyt-
ical solution are better than those in previously ob-
tained results. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

The third test example is the advection of solute 
water driven over three humps by dam-break flood 
waves. It takes 3.865 s and 13.865 s to complete the 

Fig. 10  Malpasset dam break: the flood evolution process 
(a) t=1000 s; t=1800 s 

Table 2  Total execution time and speedup ratio by CPU and GPU 

Resolution cells number 
Intel Xeon 

E5-2609/CPU 
(4-core) (s) 

NVIDIA Tesla 
M 1080/Singe 

GPU (s) 

NVIDIA Tesla 
P 100/Singe 

GPU (s) 

CPU/GPU 
speedup  

ratio/1080 

CPU/GPU  
speedup  

ratio/P100 
2 m 39 542 850 – – 17 941.5 – – 
5 m 6 326 856 34 494 2684.29 1202.33 12.8 28.7 

10 m 1 581 714 7661.78 382.49 171.79 20.0 44.6 
15 m 703 188 1334.75 136.19 59.59 9.8 23.4 

‘–’ indicates that the number of grids exceeds the calculation limit of the device 

Fig. 11  The result of the solute transport and distribution driven by the flood 
(a) t=900 s; (b) t=1000 s; (c) t=1800 s; (d) t=3000 s 
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300-s flood event using GPU and CPU computing 
models, respectively. The fourth case uses different 
grid resolutions and different hardwares to calculate 
the flood evolution event. The results show that dif-
ferent GPU models require different times to com-
plete the same event. For different grid resolutions, 
compared with traditional CPU calculations, GPU 
computing speed can be increased by 9.8–44.6 times. 

The current model is also directly applicable to 
the practical application of solute transport driven by 
shallow flows, e.g. the transmission of pollutants in 
sudden water pollution accidents. This method can be 
further developed in future work to combine chemical 
and biological reactions involving the migration of 
reactive solutes in natural water. 
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中文概要 
 

题 目：基于图形处理器加速的急变流条件下溶质输移的稳健数值模型 

目 的：暴雨山洪灾害会对人类的生命安全和经济活动产生巨大影响。此类洪水事件会破坏化工厂或污水处理厂等可能

释放有害溶质的设施，使释放的溶质随洪水向洪泛区或地势低洼处输移，进而严重影响公共卫生安全，加剧洪

水对人类造成的危害。因此，需要一个高效稳健的数值模型来对其进行快速预警和评估。 
创新点：1. 提出了一种基于图形处理器（GPU）加速的急变流驱动溶质运移的稳健数值模型；2. 探讨不同型号 GPU 和

中央处理机（CPU）的计算性能和加速比。 
方 法：1. 采用 Godunov 格式的有限体积法求解二维浅水方程和溶质输移方程，利用 HLLC 近似黎曼求解器计算单元

网格界面通量，并应用 MUSCL 限坡线性重建和龙格-库塔时间积分法实现二阶精度。2. 引入 GPU 加速计算技

术提高模型计算效率。 
结 论：1. 通过理想算例和经典算例对模型精度和稳定性的验证，表明该模型能够有效地抑制数值阻尼和虚假的数值振

荡，并且具有较好的和谐性；2. 采用不同型号的 GPU 和 CPU 计算模型模拟相同的事件，表明 GPU 加速技术

在保证模拟精度的同时可实现大规模高效率计算；3. 该模型能够快速准确地模拟暴雨山洪或溃坝洪水引起的大

规模突然性溶质输移过程，可以为水污染事故提供可靠的理论依据和有力的数据支撑。 
关键词：溶质输移；浅水方程；Godunov 格式；HLLC 黎曼求解器；GPU 加速；急变流 


