In hydrocarbon well-drilling operations, self-excited, stick-slip vibration is considered as a source of drilling equipment failures, which also causes a reduction in the drilling penetration. This leads to delays and increase in the operational and equipment costs. A new approach using distributed-lumped (hybrid) modelling is considered as the first step in understanding the stick-slip phenomena in order to determine a solution to this problem. In this paper, a hybrid modelling scheme is the advocated modelling method proposed in contrast to the conventional lumped modelling. Three case studies are used to show that hybrid modelling is an accurate technique in the representation of stick-slip oscillations, particularly when the length of the drill string is high. The results show that the modelling technique adopted in this work can more accurately present the phenomena associated with stick-slip process.
History
School
Aeronautical, Automotive, Chemical and Materials Engineering
Department
Aeronautical and Automotive Engineering
Published in
Proceedings of the Institution of Mechanical Engineers, Part K: Journal of Multi-body Dynamics
Pages
146441931769785 - 146441931769785
Citation
ALKARAGOOLEE, M.Y.A., EBRAHIMI, K.M. and WHALLEY, R., 2017. A hybrid model for a drilling process for hydrocarbon well-boring operations. Proceedings of the Institution of Mechanical Engineers, Part K: Journal of Multi-body Dynamics, 231 (4), pp.726-738.
This work is made available according to the conditions of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) licence. Full details of this licence are available at: https://creativecommons.org/licenses/by-nc-nd/4.0/
Acceptance date
2017-02-03
Publication date
2017
Notes
This paper was published in the journal Proceedings of the Institution of Mechanical Engineers, Part K: Journal of Multi-body Dynamics and the definitive published version is available at https://doi.org/10.1177/1464419317697854. Reprinted by permission of SAGE Publications.