1-s2.0-S092552731630127X-main.pdf (2.85 MB)

A multi-objective genetic algorithm for optimisation of energy consumption and shop floor production performance

Download (2.85 MB)
journal contribution
posted on 13.07.2016, 12:43 by Ying Liu, Haibo Dong, Niels Lohse, Sanja Petrovic
Increasing energy price and requirements to reduce emission are new challenges faced by manufacturing enterprises. A considerable amount of energy is wasted by machines due to their underutilisation. Consequently, energy saving can be achieved by turning off the machines when they lay idle for a comparatively long period. Otherwise, turning the machine off and back on will consume more energy than leave it stay idle. Thus, an effective way to reduce energy consumption at the system level is by employing intelligent scheduling techniques which are capable of integrating fragmented short idle periods on the machines into large ones. Such scheduling will create opportunities for switching off underutilised resources while at the same time maintaining the production performance. This paper introduces a model for the bi-objective optimisation problem that minimises the total non-processing electricity consumption and total weighted tardiness in a job shop. The Turn off/Turn on is applied as one of the electricity saving approaches. A novel multi-objective genetic algorithm based on NSGA-II is developed. Two new steps are introduced for the purpose of expanding the solution pool and then selecting the elite solutions. The research presented in this paper is focused on the classical job shop environment, which is widely used in the manufacturing industry and provides considerable opportunities for energy saving. The algorithm is validated on job shop problem instances to show its effectiveness.

Funding

The authors acknowledge the support from the EPSRC Centre for Innovative Manufacturing in Intelligent Automation in under-taking this research work under grant reference number EP/IO33467/1.

History

School

  • Mechanical, Electrical and Manufacturing Engineering

Published in

International Journal of Production Economics

Volume

179

Pages

259 - 272

Citation

LIU, Y. ... et al, 2016. A multi-objective genetic algorithm for optimisation of energy consumption and shop floor production performance. International Journal of Production Economics, 179, pp. 259 - 272.

Publisher

© The Authors. Published by Elsevier B.V.

Version

VoR (Version of Record)

Publisher statement

This work is made available according to the conditions of the Creative Commons Attribution (CC BY 4.0) licence. Full details of this licence are available at: https://creativecommons.org/licenses/by/4.0/

Acceptance date

14/06/2016

Publication date

2016-06-15

Notes

This is an Open Access article published by Elsevier and distributed under the terms of the Creative Commons Attribution Licence (CC-BY 4.0), https://creativecommons.org/licenses/by/4.0/

ISSN

0925-5273

Language

en