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Abstract: For plug-in hybrid electric vehicles, the equivalent consumption minimum strategy is typically regarded 

as a battery state of charge reference tracking method. Thus, the corresponding control performance is strongly 

dependent on the quality of state of charge reference generation. This paper proposes an intelligent equivalent 

consumption minimum strategy based on dual neural networks and a novel equivalent factor correction, which can 

adaptively regulate the equivalent factor to achieve the near-optimal fuel economy without the support of the state 

of charge reference. The Bayesian regularization neural network is constructed to predict the near-optimal 

equivalent factor online, while the backpropagation neural network is designed to forecast the engine on/off with 

the aim of improving the quality of equivalent factor prediction. The corresponding neural network training takes 

advantage of the global optimality of dynamic programming. Besides, the novel equivalent factor correction can 

guarantee that the electrical energy is gradually consumed along the trip and the terminal battery state of charge 

satisfies the preset constraints. A series of virtual simulations under a total of nine driving cycles demonstrates that 

the proposed method can deliver a competitive fuel economy comparing to the optimal solution derived from the 

dynamic programming, as well as regulating the battery state of charge to reach the desired terminal value at the 

end of the trip. 

Key Words: Plug-in Hybrid Electric Vehicles, Bayesian Regularization Neural Network, Intelligent Equivalent 

Consumption Minimum Strategy, Equivalent Factor Online Correction.  

I. INTRODUCTION 

Widely accepted, the electrified powertrain system is the most promising technology for addressing the air 

pollution and energy crisis in transportation sector. Thanks to invertible energy storage devices and electric motors, 
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the electrification enables vehicles to recover baking energy and introduces an additional degree of freedom for the 

power-flow distribution control, potentially enhancing overall powertrain efficiency and fuel economy. Thus, 

numerous efforts have been devoted to developing electrified powertrain configurations and corresponding control 

strategies. In particular, the popularity of plug-in hybrid electric vehicles (PHEVs) are increasing in both the 

automotive industry and academia [1]. For PHEVs, the vehicle’s energy storage system can be not only charged by 

the engine-driven generator but the external electric power source. Thus, compared with conventional hybrid 

electric vehicles (HEVs), a larger capacity battery is normally mounted in PHEVs to store cheaper electrical energy 

from external sources, which has the great potential of improving the fuel economy [2]. Moreover, the large-capacity 

battery allows the integration of one or multiple powerful traction motors in the electrified propulsion system, which 

can restrain the internal combustion engine (ICE) from operating in low-toque and low-efficiency regions. 

Additionally, PHEVs with the large-capacity battery is able to prolong the endurance mileage, thereby alleviating 

the range anxiety to a certain extent [3]. 

Due to the existence of multiple power sources in the electrified powertrain system, the resulting flexibility 

and complexity of the energy flow require a sophisticated energy management strategy (EMS) to distribute the 

power demand optimally among all onboard power sources. Generally speaking, EMSs can be categorized as rule-

based, optimization-based, and learning-based strategies. Rule-based EMSs are beneficial from the straightforward 

structure, low computational cost, and ease of implementation, thereby becoming the common choice for 

commercial hybrid vehicles [4]. Nevertheless, the inherent rigidity of rule-based EMSs is the inevitable defect that 

causes the low adaptiveness to the dynamic and complex real-world driving conditions. Hence, rule-based EMSs 

consistently have difficulties finding optimal management solutions in practice [5]. On the contrary, optimization-

based EMSs intend to pursue optimal energy consumption by minimizing a fuel-related cost function and, therefore, 

maximize the benefits of powertrain hybridization. Dynamic programming (DP) is the most preferred global 

optimization algorithm to solve the energy management problem for hybrid vehicles [6], thanks to its distinguished 

capability to solve constrained and nonlinear optimization problems. Whereas, due to the serve computational 

burden and strong dependence on the prior knowledge of future driving conditions, the DP method is inapplicable 

for the real-time energy management system. It is typically regarded as a benchmark to explore the maximum fuel 
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economy improvement, thereby evaluating performance or extracting the optimal control parameters for alternative 

EMSs [7]. Instantaneous optimization algorithms, compared with global ones, can obtain a trade-off between the 

computational cost and fuel economy optimality. Essentially, the fuel-related cost function is optimized 

instantaneously without gathering comprehensive information of entire driving conditions in advance. The resulting 

local-optimal power flow distribution can offer fuel economy close to that of global optimization methods [8]. 

Learning-based EMSs have been rapidly developed thanks to the recent advances in machine learning and artificial 

intelligence techniques for data-based network training approaches [9]. The excellent generalization and prediction 

capabilities of learning methods enable EMSs to learn from the globally optimized control actions and, afterwards, 

apply them locally. Reinforcement learning and neural network learning are standard leaning methods in terms of 

the EMSs’ design.  

Among the existing EMSs, the equivalent consumption minimum strategy (ECMS), a representative of 

instantaneous optimization algorithms, is the most promising online EMSs and has been widely used in practical 

applications at present [10, 11]. This method, derived from the Pontryagin’s minimum principle (PMP), was initially 

proposed for HEVs by Paganelli [12]. The basic concept of ECMSs is to unify the ICE fuel consumption and the 

battery electrical energy consumption into a single variable representing the fuel economy of vehicles. The single 

variable is referred to as equivalent fuel consumption. The unification as mentioned above enables the feasibility of 

the instantaneous optimization of the total energy consumption, including both fuel and electrical energy. The fuel-

electricity conversion process is performed by introducing an equivalent factor (EF) that weighs the electrical 

energy expenditure as an equivalent quantity of fuel consumption. For the sake of pursuing maximum energy saving, 

the EF should be a volatile value and tunned dynamically on the basis of powertrain operations in real time. 

Consequently, a variety of EF estimation methods have been proposed to adaptively regulate EF considering the 

vehicle status and driving conditions. Regarding HEVs’ applications, it is expected that the EF is regulated 

according to the parameters related to the battery state of charge (SOC) at each instant, aiming to suppress the 

excessive SOC deviation from the desired constant. For example, a tangent-shape function of the SOC deviation 

was employed to correct the EF, to ensure the vehicle charge-sustaining [13]. Unsimilar to HEVs, PHEVs attempts 

to fully deplete the battery power at the end of the current trip and recharged before the next trip. Thus, the desired 
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SOC trajectory for PHEVs is no longer a constant. Ideally, SOC should decline gradually along with the travel 

distance to reach the admissible minimum at the end of the trip. In other words, a SOC reference trajectory is 

required for PHEVs to guide power flow distribution along the trip, thereby ensuring both optimal energy 

consumption and the desired value of the terminal SOC. For simplicity, some researchers proposed to define the 

SOC reference trajectory as a linear function of the remaining trip distance, while only delivering the sub-optimal 

fuel economy [14-16]. The SOC reference trajectory planning can be improved by introducing the extra variables 

on top of the trip distance, such as future average speed [17] or predicted power demand [18]. Besides, artificial 

neural networks (NNs), such as recurrent NN (RNN) [19] and neuro-fuzzy system [20], also can be applied to 

generate the SOC reference trajectory based on the historical driving data. The NN-enhanced SOC reference 

generator takes advantage of the outstanding learning ability of NN, which facilitates full use of implicit knowledge 

from optimal SOC reference trajectories of different driving cycles. Given the existence of the SOC reference 

trajectory, the EF online regulation can be simplified as the SOC tracking problem. In other words, the tracking 

methods, such as PID controllers [21, 22] and map-based methods [1], have to be employed to adjust the EF with 

the aim of tracking SOC reference. It should be noted that both the inevitable imperfections of SOC reference 

generation and SOC tracking errors contribute to control performance degradation. To eliminate the twofold defects 

causing sub-optimal performance, EF online estimation method should regulate the EF intelligently without the 

support of the SOC reference trajectory, as well as guaranteeing not only SOC ending at the desired value but the 

optimal fuel economy. This ideal scenario is achievable by applying the data-driven NN-enhanced ECMS. Xie et 

al. [3] constructed a common three-layer backpropagation NN to predict the EF online with three accessible input 

variables, including the current power demand, the battery SOC, and the ratio of the travelled distance to the total 

distance. The training simples were extracted from the global optimal solutions over 4 real-world bus driving cycles. 

Without the SOC reference, the network verification over test driving cycle shows that the SOC is able to terminate 

at the desired value within an accepted toleration. Moreover, merely around 1.5% fuel economy deterioration can 

be expected when comparing the proposed NN-enhanced ECMS with the global optimized offline controller. 

However, the weakness of Xie’s research is the lack of robustness test for the proposed method, as there is only one 

driving cycle selected for the network verification. Even worse, only city bus routes, which are quite regular and 



 5 of 32 

 

similar, were selected for both network training and verification. Note that only few researches, to the authors’ 

knowledge, have been conducted to investigate intelligent ECMS for PHEVs’ energy management without the SOC 

reference trajectory. 

In conclusion, the SOC reference generator is typically employed in EMSs for PHEVs, thereby ensuring that 

the electrical energy is gradually and optimally depleted along the trip. Concerning ECMS applications, EF 

regulation methods are primarily conceived to track the given SOC trajectory. Nevertheless, both SOC reference 

generation and tracking unavoidably result in the control performance degradation due to their parasitic deficiencies, 

such as sub-optimal SOC trajectory generation and tracking errors. To remove the aforementioned twofold 

deficiencies, an NN-enhanced ECMS is herein developed in this research, which consists of ECMS as the core 

algorithm and two NNs to regulate the EF online. One NN is trained to directly predict the EF, while the other is to 

recognize the optimal engine on/off status with the aim of correcting the predicted EF. In this manner, the EF is 

adaptively and optimally regulated by the combined NNs based on the influential driving features. Regarding the 

NN training, the training dataset with inputs and outputs is extracted from optimized control actions over selected 

driving cycles. The global optimization is achieved by the DP algorithm with the objective to minimize the total 

equivalent fuel consumption over the entire driving cycle. Moreover, the SOC-distance factor is proposed to further 

correct the predicted EF for the purpose of reaching the desired terminal SOC. Last, the proposed NN-based ECMS 

is validated over two test driving cycles to demonstrate its adaptiveness to different driving conditions and the 

optimality of power distribution management. The main contributions of this research can be summarized into the 

following three aspects: (1) the Bayesian regularized NN (BRNN) is, to the authors’ knowledge, first proposed to 

predict the EF for ECMS online application. Compared with Levenberg–Marquardt training algorithm, the main 

merit of the Bayesian regularization is the capability of developing considerable generalized quality networks [23]. 

The resulting accuracy and prediction performance are justified in this research; (2) a classification NN is utilized 

to predict the engine on/off status, so as to adjust the predicted EF to lessen the side effects of the prediction error; 

(3) a novel EF correction factor is introduced to ensure that the terminal SOC reaches at the desired value at the end 

of the trip. Thus, the SOC reference trajectory generation is excluded in the energy management system, thereby 

eliminating its parasitic deficiencies. 
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The remainder of this paper is organized as follows. Section Ⅱ describes the PHEV powertrain model for EMS 

performance evaluation. Section Ⅲ demonstrates the overall structure of the proposed NN-based ECMS firstly. The 

basic ECMS and DP optimization procedure is then presented, followed by detailing the data processing method 

for the training data preparation. Afterwards, the novel EF correction method is discussed. The NN quality 

assessment is presented at the end of this section. Section Ⅵ displays important results in terms of the fuel economy. 

Finally, the main conclusions are summarized in Section Ⅴ. 

II. PHEV POWERTRAIN MODELING 

In this study, a power-split PHEV is selected for NN-Based ECMS tuning, testing, and validation. The 

powertrain system consists of a 39 ampere-hour (Ah) Lithium-ion battery, two electric motors (Motor 1 and Motor 

2), a planetary gear set, and a 2-L gasoline engine, as illustrated in Fig. 1. The engine, Motor 1, and Motor 2 connect 

with the planet carrier, the ring gear, and the sun gear, respectively. Since the dynamic characteristic is often 

neglected for ease of EMS design, the fuel map of ICE is inserted to characterize the engine performance. Motor 1 

can operate as either a traction motor or a generator, while Motor 2 is employed mainly to provide propulsion power. 

The main specifications of the powertrain system are summarized in Table Ⅰ.  

Motor 1

Motor 2

Converter

Battery
 

 

Fig. 1. Power-split PHEV powertrain structure 
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Table I. Main parameters of power-split PHEV 

Parts Parameters Value 

Vehicle Total Mass 1801 kg 

Battery 
Rated Capacity 47.03 Ah 

Rated Voltage 233.89 V 

Motor 1/2 Peak Power 70 kW/50 kW 

Engine Cylinder No. 4 

Planetary Gear Set 
Ring Gear Teeth 83 

Sun Gear Teeth 37 

Final Drive Ratio Gear Ratio 3.02 

 

Given simplification, effectiveness and modelling accuracy of the battery simulation, the internal resistance 

battery ( intR ) model is utilized to characterize the electrical performance of the battery in this research. Besides, 

only the vehicle longitudinal motion is considered as the road load. In other words, the steering dynamic and lateral 

dynamics are neglected in this research. Additionally, the road topography is assumed flat for all investigations. 

III. STRUCTURE AND DESIGN PROCESS OF NN-BASED ECMS 

Due to the prominent performance in balancing between global optimization and real-time implementation, 

ECMS is employed as the core algorithm of energy management in this paper. Aiming to improve the adaptiveness 

of ECMS to the uncertainties of the real-world driving conditions, the NN-based EF estimation method is proposed 

to learn from the optimized control actions under selected driving cycles. Note that the EF prediction error may 

result in operating the engine to provide the propulsion power when the optimal control decision is to utilize the 

electric power solely. To avoid such incidents, an extra NN is trained to predict the engine status, which enables the 

proposed method to decrease the value of the predicted EF at engine-off scenario and, therefore, consolidates the 

engine shutdown event. The downscaling factor of 0.95 is selected to reduce the EF in this scenario. The design 

process of the NN-enhanced ECMS can be divided into the offline design part and online implementation part. 

The offline design consists of three steps. The first step is the training dataset generation, carrying out by DP 

global optimization method. The optimization objective is to minimize fuel consumption globally by optimizing EF 

trajectories over designated driving cycles. Subsequently, driving feature selection is inspired by the relevant 

researches and regarded as the inputs of the proposed NNs. Principal component analysis (PCA) is introduced to 
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reduce the dimensionality of the dataset, while remaining significant features that are enough to describe the 

problem with sufficient accuracy. The third step is the offline training of two NNs concerning the engine on/off 

status and the optimal EF, respectively.  

In terms of the online part, the proposed energy management control strategy comprises four modules: ECMS 

as the core control algorithm, a well-trained BRNN as the EF predictor, a classification NN as the EF modification 

for engine-off scenario, and the EF correction for the terminal SOC restraint. Note that for the online implementation 

of the proposed EMS, the destination of the upcoming trip is required to be known in prior. Besides, it is assumed 

that the historical travel information can be accumulated to calculate the travelled distance instantaneously. Both 

two assumptions can be easily realized in practice with the assistance of the global position system (GPS) and 

geographic information system (GIS). The sketch of the design process and detailed NN-based ECMS architecture 

are summarized in Fig. 3.  

The following subsections present the details of the offline design process for EF BRNN predictor and engine 

status NN classifier. First, the basic ECMS is demonstrated with the EF global optimization method. Second, driving 

cycles are selected and constructed for DP optimization to obtain globally optimal solutions for NN training. Then, 

the optimal solutions are processed and re-constructed to establish the training dataset. Later, the EF correction 

method is elaborated, followed by the description of the structures of both EF BRNN predictor and engine status 

NN classifier. Final, the quality of trained NNs is assessed by comparing NN outputs and targets. 
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Fig. 2. Design process (upper block) and structure of the proposed NN-based ECMS 

A. ECMS and EF optimization method 

For a given driving cycle, solving the optimal control problem is to find the optimal control sequence within 

admissible control limits by minimizing the fuel-related cost function. In this research, the cost function can be 

mathematically summarized as, 

 
0

( ( )) ( ( ), ( ))
ft

f f ft
J x t m x t u t dt= +   (1) 
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where J  is integral performance index. ( ( ))f fx t  represents all prescribed constraints on the final state. ( )x t  

represents the state variable. 0t  and ft  is the beginning and ending time of the trip. fm  is the fuel flow rate. 

( )u t  represents the control variables which could be engine output torque, battery power, etc. 

The battery SOC is chosen as the state variable ( )x t , and the control variables ( )u t  is the EF ( )t , 

 ( ) ( )x t SOC t=  (2) 

 ( ) ( )u t t=  (3) 

Based on the concept of ECMS, the optimal control at each instant is achieved by selecting the optimal power 

distribution that instantaneously minimizes total equivalent fuel consumption. Thus, derived from Eq. (7), the 

objective function in ECMS is expressed as,  

 
0

( , , )
ft

equt
J m x u t dt=   (4) 

Subject to the physical constraints on the power components as follows, 

_ min _ max _ min _ max _ min _ max

1_ min 1 1_ max 1_ min 1 1_ max 1_ min 1 1_ max

2 _ min 2 2 _ max 2 _ min 2 2 _ max

, ,
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    2 _ min 2 2 _ max

_ min _ max min max,

t mot mot

bat bat bat

T T

P P P SOC SOC SOC






 
    

 (5) 

where T  and   denote torque and speed, respectively. The subscript eng , 1mot  and 2mot  mean the engine, 

Motor 1 and Motor 2, respectively. The indexes min  and max  represent the upper and lower boundaries. equm  

is the instantaneous equivalent fuel consumption, which is the sum of battery equivalent consumption elem  and 

the actual fuel consumption engm  at each instant, expressed as, 

 equ eng elem m m= +  (6) 

Battery equivalent fuel consumption can be calculated as, 

 ( ) ( ) bat
ele

P
m t t

LHV
=  (7) 

where LHV  represents the fuel lower heating value. 
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In this research, the optimal EF trajectory is obtained offline by means of DP algorithm for given driving cycles, 

and regarded as the training dataset for the EF NN-based estimation model. DP algorithm can decompose a 

multistage control problem into a sequence of interrelated one-stage problems that can be solved recursively [24]. 

In each sub-problem, the control and state variables are discretized. The costs of all admissible control actions can 

be evaluated by the prescribed cost function over all state and control grids exhaustively, and memorized in a matrix 

of costs. Subsequently, DP algorithm finds the optimal sequence control actions that minimize the cost function 

globally while satisfying all constraints. Note that DP proceeds the cost evaluation backward, this is, in this research 

the equivalent fuel consumption from step ( 1)N −  to the last step N  is calculated first. The cost-to-go function 

for step ( 1)N −  is 

 *
1

( 1)
( ( 1)) min [ ( ( 1), ( 1))]N

u N
J x N J x N u N−

−
− = − −  (8) 

For step  (0 1)k k N  − , the cost-to-go function is 

 * *
1

( )
( ( )) min[ ( ( ), ( )) ( ( 1))]k k

u k
J x k J x k u k J x k+= + +  (9) 

where *( ( ))kJ x k  is the optimal cost-to-go function at state ( )x k  from step k  to the end of the driving cycle. 

( ( ), ( ))J x k u k  is the instantaneous cost at step k . ( 1)x k +  is the state in step ( 1)k +  after the control ( )u k  is 

executed at step k . 
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Fig. 3. Flow chart of DP solving procedure 

Regarding the EF optimization over driving cycles in this research, the EF and battery SOC are the control and 

state variables, respectively. Both of them are discretized into finite grids before DP problem is formulated. In DP 

optimization process, all feasible control grids at every state will be found at each time step of the given driving 

cycle, subject to the constraints imposed in Eq. (11). The corresponding instantaneous cost can be evaluated by Eq. 

(10), following by searching the minimum cumulative cost from the current step to the last step by Eq. (15). By 

proceeding backward from the terminal of the driving cycle, the optimal EF trajectory can be achieved. The flow 
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chart of DP solving procedure is presented in Fig. 4, where the cost at each step is the equivalent fuel consumption, 

the required vehicle speed is given by the selected driving cycle, and the power demand is calculated by Eq. (4). 

B. Driving Cycle Selection and Construction for DP Optimization 

In general, a well-trained neural network has superior performance in the classification and prediction arena 

within the data range being utilized during the training phase [25]. Thus, the driving cycles selected for training 

dataset generation should correctly represent the diversity of the real-world driving conditions, this is, preferably 

include different driving patterns as much as possible to promote the generalization of neural networks. Besides, a 

sufficient number of data samples is required to guarantee the training effect of the neural network. Given the 

concerns mentioned above, five representative driving cycles, recommended by Liu et al. [26], are selected to 

generate the training dataset, which are NEDC, HWFET, UDDS, LA92 and US06. In Liu’s study, 23 standard 

driving cycles were classified into five categories by using clustering analysis methods. The selected five driving 

cycles are the representatives of each driving cycle category. Moreover, WLTC and a real-world customized cycle, 

namely CQ1, are also included in the training data. WLTC is a prevalent standard driving cycle, frequently 

introduced to design and evaluate powertrain-related techniques, such as EMS [27] and thermal management 

systems [28]. CQ1, shown in Fig. 5, is tested in Chongqing and provided by the industrial partner.  

 

Fig. 4. Speed profile of CQ1 driving cycle 

Due to the specifications of the selected PHEV in this research, the specified standard and real-world driving 

cycles have to be repeated several times to fully deplete the battery energy. Otherwise, the simple charge-depletion 

mode should be selected as EMS, as the pre-stored electric energy is sufficient to drive the vehicle to reach the 

destination. More importantly, the length of the driving cycles must dramatically exceed the all-electric range (AER), 

to clearly demonstrate the benefits of the proposed EMS. Thus, in this research, the aforementioned driving cycles 

will be extended by repeating themselves until the cumulative propulsion energy demand exceeds twice upon the 
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maximum storable battery energy. For simplicity, the constructed driving cycle is named the original driving cycle 

followed by the number of replications. For example, NEDC_3 implies that the constructed driving cycle is 

composed of 3 repeated NEDC. The descriptions of all selected driving cycles are presented in Table Ⅱ. 

Table II. Constructed driving cycle descriptions 

Driving Cycle Description Number of Replications 

NEDC 

New European Driving Cycle (NEDC) represents the typical 

usage of a car in Europe, consisting of 4 repeated urban driving 

cycle and 1 extra-urban driving cycle. 

7 

HWFET 
Highway Fuel Economy Test (HWFET) represents smooth 

highway driving conditions. 
5 

UDDS 
Urban Dynamometer Driving Schedule (UDDS) represents city 

driving conditions. 
7 

LA92 
LA92 is designed to simulate realistic urban and suburban 

driving with more aggressive accelerations and more transients. 
4 

US06 
US06 reflects the aggressive driving behaviors such as hard 

accelerations and decelerations coupled with high-speed driving. 
5 

WLTC 

Worldwide harmonized Light vehicles Test Cycles (WLTC) 

includes urban, suburban, rural and highway driving scenarios, 

which has an equal division between urban and non-urban paths. 

3 

CQ1 
Chongqing1 is the real-world driving cycle tested in Chongqing, 

China, including city and highway driving scenarios. 
3 

 

C. Training Dataset Processing and Analysis 

1). Optimal Solution Analysis and Re-construction 

The initial training dataset composes of the DP optimization results over all constructed driving cycles. Note 

that the deceleration segments of the driving cycle should be excluded in the training dataset, as the vehicle braking 

force controller is independent of the proposed ECMS. However, the power for electric accessories and road loads, 

such as rolling and air resistances, are still existed during the vehicle deceleration. Thus, when the vehicle 

deceleration rate is relatively low, the positive propulsion power is still required to satisfy the aforementioned power 

demand. In this driving scenario, the proposed ECMS is still expected to manage the energy flow distribution. As a 

result, the driving conditions with the negative power demand are omitted from the optimization results in advance 

of constructing the training dataset. 
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According to the concept of the ECMS, a low EF implies that electrical energy is cheaper than using fuel and, 

therefore, the controller encourages the use of battery energy. Conversely, a high EF implies that using electrical 

energy is expensive, thereby reducing battery usage or charging the battery. Thus, for a given driving condition, 

there exists a threshold for the EF that determines whether the engine is engaged to provide the propulsion power. 

Provided that the EF drops below the threshold, the engine will be turned off regardless of the specific EF value. 

On the contrary, the EF will significantly affect the power split between the engine and traction motors when the 

EF is above the threshold. In conclusion, when the engine is required to provide propulsion power to achieve 

minimum equivalent fuel consumption, the precision of the EF prediction is of considerable importance in realizing 

the optimal power distribution.  

However, the summary of the DP optimization results, listed in Table Ⅲ, shows that the engine-on factor, 

representing the percentage of time with operating the engine, is lower than 30% in cases of 4 constructed driving 

cycles including NEDC_7, USSD_7, LA92_4, and CQ1_3. It implies that the initial training dataset is biased 

towards the driving conditions without operating the engine, which potentially causes that the trained NN predicts 

the EF more accurately at engine-off scenario than that at engine-on. Given the importance of the EF prediction 

accuracy at engine-on scenario, the training dataset ideally should have an equal division between engine-on and 

engine-off scenarios. Thus, for each constructed driving cycle, the DP optimization results at engine-on scenario 

are constantly repeated until the engine-on factor is over 50%. The corresponding replications of engine-on duration 

are presented in Table Ⅲ.  

As a consequence of the proposed replication, the total samples of each re-constructed driving cycle are widely 

dispersed within the range of 1990 to 8768, as shown in ‘Re-constructed Results’ column in Table Ⅲ. Hence, the 

re-constructed driving cycles should be repeated further to equalize the contribution of each case to the training 

dataset. The resulting total samples of the repeated re-constructed results are all around 8500, and the resulting 

replications for each case are listed in the last column of Table Ⅲ. 
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Table III. Summary of DP 0ptimization result modification for NN training  

Cases 
Total 

Duration (s) 

DP Optimization Results Re-constructed Results Replications 

of Re-

constructed 

Results 

Engine-on 

Duration (s) 

Engine-on 

Factor (%) 

Total 

Samples 

Replications 

of Engine-on 

Duration 

Engine-on 

Factor (%) 

Total 

Samples 

NEDC_7 8260 1076 21.7% 4963 4 52.5% 8191 1 

HWFET_5 3825 1511 45.5% 3320 2 62.6% 4831 2 

UDDS_7 7420 1210 23.6% 5138 4 55.2% 8768 1 

LA92_4 5740 828 27.8% 2980 3 53.6% 4636 2 

US06_5 2980 1207 60.7% 1990 1 60.7% 1990 4 

WLTC_3 5400 1045 32.8% 3183 3 59.5% 5273 2 

CQ1_3 4075 1006 20.6% 4887 4 50.9% 7905 1 

 

2). Driving Feature Selection for NN Inputs 

The input selection for both EF prediction NN and engine status classification NN is inspired by researches in 

using NN to recognize driving patterns [1, 29], generate SOC reference [20, 30], and predict EF [3, 31]. All 

candidates for NN inputs, 14 representative driving features in total, are summarized in Table Ⅳ. 

Table IV. Driving feature candidates for NN inputs 

In the past 120 seconds Instantaneous Value 

Average Speed Average Deceleration Battery SOC 

Maximum Speed Maximum Deceleration Speed 

Average Acceleration 
Acceleration Time Ratio 

(accelerating time/total time) 
Power Demand 

Maximum Acceleration 
Deceleration Time Ratio 

(decelerating time/total time) 

Ratio of Distance Travelled 

to Total Distance 

Idle Time Factor  

(idle time/total time) 

Constant Speed Time Ratio 

(contend speed time/total time) 
  

 

Hasan [32] claims that redundant input variables usually result in low generalization capabilities and, therefore, 

poor test performance. Accordingly, the dimension of the input layer should be appropriately reduced by eliminating 

the least effective and correlated features, while still sufficient enough to describe the underlying characteristics of 

the problem and small enough to generalize for other datasets [33]. In this research, PCA is utilized to reduce the 

number of driving features collected in the past 120 seconds. PCA is a popular statistical procedure that can reduce 

the dimensionality of the dataset while preserving as much of the data variation as possible [34]. As a result, the 
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PCA shows that the first three principal components account for around 82% of the observed variance of the driving 

features collected in the past 120 seconds. 

To sum up, seven variables are imposed as the inputs of two NNs, which are the first three principal 

components of the driving features collected in the past 120 seconds, battery SOC, vehicle speed, power demand, 

and ratio of distance travelled to total distance.  

D. EF Correction Module 

In Xi’s research [35], NN was utilized to predict the extender output power for the extended range electric 

vehicle (EREV). The proposed NN was well trained against the DP optimization results over three artificial driving 

cycles constructed by repeating US06 two, three, and six times, respectively. The NEDC was employed to construct 

80-km, 120-km and 165-km simulation driving cycles, which were adopted to validate the trained NN controller 

performance. The simulation results evidenced that the proposed NN-based EMS has unacceptable adaptiveness to 

the trip length. To be specific, the battery SOC can amount to the desired SOC of 0.3 at the end of the trip only 

when the trip length is 120 km. For the case with a shorter trip length, the terminal SOC is around 0.5. On the 

contrary, the test vehicle operates in a charge-sustaining mode after arriving at 120-km mark, as the battery SOC 

has already reached the lower limit. Thus, Xi at el. [35] proposed introducing the electricity consumption per unit 

distance calculation module, PCor , to correct the predicted extender power output to ensure the terminal SOC of 

0.3. PCor  is defined as the ratio between the available battery capacity and the remaining range. 

 ( ( ) ) ( ( ))P rem rem terminal totalCor SOC D SOC t SOC D D t= = − −  (10) 

where remSOC  is the available battery capacity. remD  is the remaining distance from the current location to the 

end of the trip. ( )SOC t  is the current battery SOC. terminalSOC  is the desired terminal SOC. ( )D t  and totalD  

is the travelled and total distance, respectively. 

 In this research, an aforementioned correction method is improved by nondimensionalizing the electricity 

consumption per unit distance, called SOC-distance factor. The nondimensionalization makes SOC-distance factor 

varying around a unit. Consequently, the correction can be directly and easily applied to the EF. The SOC-distance 

factor is expressed as, 
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( ( ) ) ( )

( ( ))

terminal max terminal

total total

SOC t SOC SOC SOC

D D t D


− −
=

−
 (11) 

where maxSOC  is the prescribed maximum SOC of 0.8 and terminalSOC  is fixed as 0.29. 

 By implementing the EF correction, the optimal EF derived from the DP optimization will be divided by the 

proposed SOC-distance factor, which is regarded as the output dataset for the BRNN training. When the BRNN is 

implemented online as the EF predictor, the output predicted by the BRNN will be multiplied by the SOC-distance 

factor to achieve the inverse transformation. Note that the SOC-distance in the training dataset is calculated based 

on the optimization results, while that in online implementation is determined by the actual SOC and travelled 

distance at each instant. In this manner, the remaining distance of the trip proactively impacts the EF regulation and 

still reserves the optimality delivered by the DP optimization.     

E. BRNN for EF Prediction 

A multilayered neural network is adopted to predict EF dynamically, as illustrated in Fig. 6. The node number 

of the input layer is fixed as the length of the inputs. Three hidden layers are constructed with 15, 40 and 15 neurons 

in sequence. The single output node represents the EF in ECMS. 

The Bayesian regularization algorithm is adopted to train the NN. Bayesian regularization is a mathematical 

process that converts a nonlinear regression into a “well-posed” statistical problem in the manner of a ridge 

regression [36]. During the training process, the number of nontrivial weights in NN, referred to as effective network 

parameters, is evaluated. Consequently, irrelevant neurons can be effectively deactivated. In this manner, the total 

number of weights is considerably smaller than that in a standard fully connected backpropagation NN. The 

resulting benefit is to reduce the potential of overfitting and overtraining, thereby improving the generalization 

ability of the neural network. 
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Fig. 5. Structure of EF BRNN predictor 

Thus, the essence of the Bayesian Regularization algorithm is the transition from searching the minimum of 

the mean square error to minimize the following function [37],  

 W DM E E = +  (12) 

where   and   are hyperparameters. WE  is the sum of squares of the network weights. DE  is the sum of 

squared estimation errors, expressed as, 

 
2

1

1
( ( ) ( ))

2

N

D i

k

E X output k target k
=

= −  (13) 

where ( )output k  is the NN output and ( )target k  are the target data. 

F. Classification NN Structure for Engine Status Prediction 

 Regarding EMS design, backpropagation NNs are extensively employed to identify the labeled features of the 

problem, due to its high-level classification accuracy and the ease of online implement. In this research, a 

backpropagation NN is developed to predict the engine status. When the engine status is predicted as shutdown, a 

reduction coefficient 0f 0.95 is applied to the predicted EF to ensure the engine shutdown event is consolidated. 

The input layer of the backpropagation NN is identical to that of the EF BRNN predictor. Four hidden layers are 

constructed with 8, 15, 15 and 2 neurons in sequence. The two outputs are two different engine statuses: engine-off 

and engine-on.  

Inputs Output

s 

 Input Layer         Hidden Layer       Output Layer 
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G. Quality Assessment of NN models 

In advance of assessing the performance of two NNs, it is worth mentioning that the entire optimized dataset 

is randomly partitioned into training, validation, and testing in ratio of 70:15:15 for both EF BRNN predictor and 

engine status NN classifier. The training set is used to fit the NN to learn underlying patterns present in the given 

dataset. The validation set is used to provide an unbiased evaluation of the NN fitted by the training set while further 

tuning NN hyperparameters. The testing set is excluded during the training process and only utilized to assess the 

performance of the trained NN after the completion of the training and validation processes. 

To have a clear perspective of NNs’ performance, the confusion matrix for engine status classification and the 

regression plot for EF prediction are shown in Fig. 7 and Fig. 8, respectively. 

 

Fig. 6. Confusion matrix showing results of engine status classification 
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Fig. 7. EF regression plot comparing the target versus predicted values 

In the confusion matrix, the green diagonal cells imply the number and percentage of correct detection cases, 

while the red cells correspond to misclassified observations. The bottom row summarizes the classification accuracy 

with respect to the target value, and the right-most column shows the classification accuracy with respect to the 

predicted labels. The total percentage of correct and incorrect detection cases are listed in the bottom-right cell 

highlighted in blue and red, respectively. In Fig. 7, category 1 indicates that the engine operates to provide the 

propulsion power or charge the battery, which category 2 is the engine-off. It is evident that the overall detection 

accuracy for engine status is 99.1% over a total of 62304 sampling points. The total percentage of misclassification 

cases for the engine-off is 0.7%, which is higher than that for the engine-on. It indicates that the trained engine 

status classifier is slightly biased towards the prediction of the engine-on. However, high overall detection accuracy 

validates the effectiveness of the online implementation of the trained engine status NN classifier.      

The regression plots, shown in Fig. 8, present the BRNN outputs with respect to targets for training, validation, 

test, and combining all. It can be observed that the correlation between the predicted outputs and targets is 

reasonably strong over all data sets, with the regression coefficient (R) above 0.986. The closeness of the regression 

coefficient to 1 is an indication that the NN model fits the data well with a highly accurate prediction. Moreover, 
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the training stage has the highest regression coefficient of 0.98743. In terms of the validation and testing data sets, 

the overall patterns of the data points distribution are similar and a decreasing trend of the regression coefficient 

can be observed, which indicates that there is no overfitting in the EF NN predictor. 

IV.  NN-BASED ECMS VALIDATION AND TEST 

In this section, all simulations are conducted based on the selected vehicle model with fixed component size 

in Section Ⅱ, to validate and test the proposed NN-based ECMS. The driving cycles employed for the NN training 

are considered as the validating driving conditions, details of which are presented in Table Ⅱ. While, two new 

driving cycles, WVUSUB and a real-world customized cycle CQ2, are defined as the testing driving profiles to 

verify the effectiveness of the proposed method. Similar to CQ1 driving cycle, CQ2 cycle is tested in Chongqing 

and the corresponding speed profile is shown in Fig. 9. Besides, the performance of the proposed method is analyzed 

through the comparison with DP optimization algorithm and an adaptive ECMS proposed by Xie [38]. The adaptive 

ECMS, regarded as the baseline controller for the validation, utilizes a proportional integral (PI) controller to adjust 

the EF, to ensure that SOC tracks the reference trajectory. A liner function of the remaining trip distance is 

considered as the expression of SOC reference trajectory. Additionally, all simulations were performed in Matlab 

environment on a laptop computer with a 3.1-GHz CPU and 8-GB memory. 

 

Fig. 8. Speed profile of CQ2 driving cycle 

A. Performance Validation 

The simulation results in terms of fuel economy over the validating driving cycles are listed in Table Ⅴ. It can 

be seen that the PI-based ECMS always leads to the highest fuel consumption with the smallest computation time. 

NN-based ECMS can contribute to approximate 3 to 8 percentages less fuel consumption than that of the PI-based 

ECMS. Compared to the DP optimization method, NN-based ECMS is able to deliver similar percentages of fuel 

saving rate over all validating driving cycles. Up to 98.22% fuel saving of DP can be realized by the proposed 
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method under LA92_4 cycle, while the lowest is 95.35% fuel saving of DP under US06_5. On average, the proposed 

method can conduce to 96.81% fuel saving of DP over all validating driving cycles. Given the nearly identical 

terminal SOC for all test cases, it can be assumed that the fuel saving is merely attributed to the optimality of the 

controller itself. Thus, the near-optimal performance of the proposed method indicates that the EF BRNN predictor 

is well trained to predict the EF close to the optimal value and the proposed NN-based ECMS can approximate the 

optimal control actions. Besides, DP is the most time-consuming in all cases. Whereas, the proposed NN-based 

ECMS can significantly reduce the computation burden, which ensure the development of the real-time EMS. 

Table V．Fuel consumption comparison over validating driving cycles 

Cases Control Strategy Fuel Consumption (L) Saving Rate (%) Terminal SOC Computation Time (s) 

NEDC_7 PI-based ECMS 2.228 - 0.305 59.2 

 NN-based ECMS 2.125 4.57 (97.34%) 0.303 181.0 

 DP 2.070 7.05  0.290 1723.8 
      

HWFET_5 PI-based ECMS 2.757 - 0.303 35.5 

 NN-based ECMS 2.635 4.41 (96.26%) 0.303 74.6 

 DP 2.540 7.87  0.291 784.5 
      

UDDS_7 PI-based ECMS 2.269 - 0.292 44.5 

 NN-based ECMS 2.158 4.88 (98.06%) 0.292 182.7 

 DP 2.117 6.68  0.291 1920.3 
      

LA92_4 PI-based ECMS 2.139 - 0.305 38.3 

 NN-based ECMS 2.012 5.96 (98.23%) 0.293 114.0 

 DP 1.977 7.58  0.291 1142.8 
      

US06_5 PI-based ECMS 3.088 - 0.309 17.2 

 NN-based ECMS 2.973 3.72 (95.35%) 0.302 57.7 

 DP 2.841 7.99  0.291 602.8 
      

WLTC_3 PI-based ECMS 2.366 - 0.299 31.9 

 NN-based ECMS 2.290 3.22 (96.14%) 0.297 110.3 

 DP 2.205 6.83  0.291 1098.3 
      

CQ1_3 PI-based ECMS 2.550 - 0.290 66.9 

 NN-based ECMS 2.456 3.67 (96.32%) 0.290 244.5 

 DP 2.369 7.09  0.291 2386.5 
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Fig. 9. SOC trajectories of different methods under training driving cycles 
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Although both the DP and proposed method can ensure that the terminal SOC reaches the prescribed value, 

the diversity of the SOC trajectory during the trip can contribute to completely different power distribution and, 

therefore, fuel consumption. Thus, the SOC trajectories of different control methods for all validating cases are 

presented in Fig. 10. Overall, the trend of battery SOC based on the proposed NN-based ECMS is basically 

consistent with the optimal SOC trajectory generated by DP optimization. In particular, the battery SOC trajectories 

under the DP and NN-based ECMS overlap considerably over WLTC_3 and CQ1_3. Although slightly larger 

discrepancies of battery SOC trajectories are observed over the rest of validating driving cycles, the proposed 

method still can track the SOC variation patterns derived from DP optimization results. Note that the fuel 

consumption delivered by NN-based ECMS over such driving cycles, shown in Table Ⅴ, is fairly similar to that of 

DP optimization. Hence, from the perspective of fuel economy, the observed SOC discrepancies appear to be 

acceptable. 

Additionally, as indicated in Fig.10, the terminal battery SOC based on the proposed method can always be 

guaranteed within an acceptable deviation from the prescribed value of 0.29. It is worth mentioning that the terminal 

SOC is satisfied without the support of the SOC reference trajectory. It implies that the proposed SOC-distance 

factor is capable of adaptively correcting the EF online based on the reaming trip distance, thereby suppressing the 

excessive over-discharge or over-charge of the battery before the end of the trip. Take the case of HWFET_5 as an 

example. The proposed method intends to utilize the electrical energy to propel the vehicle before around 2500 s, 

which leads to a larger decreasing slope of the SOC trajectory than that of DP algorithm. Thereafter, the SOC 

discrepancy gradually becomes smaller and two SOC trajectories almost completely overlap at around 3500 s. This 

SOC adjustment can be explained as follow. According to Eq. (17), for a given remaining trip distance the relatively 

low SOC will yield the decrease of the SOC-distance factor, thereby enlarging the EF predicted by the BRNN. As 

a consequence, the engine usage will be promoted to drive the vehicle or charge the battery and, therefore, prevent 

the over-discharge of the battery. As is illustrated in the highlighted regions in Fig. 10, the adaptive EF correction 

based on the battery SOC and remaining trip distance becomes more influential on the SOC adjustment when 

approaching the end of the trip.  
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Moreover, it can be found in Fig. 10 that SOC trajectories of DP method are below the prescribed SOC lower 

bound of 0.29 near the end of the trip in some cases. This is because that the deceleration at the end of the trip results 

in a battery charging event. Thus, the battery has to be deliberately depleted below the SOC lower bound before the 

deceleration, to ensure that the terminal SOC reaches the prescribed lower bound. Under NEDC_7, HWFET_5, 

US06_5, and WLTC_3, this phenomenon is evident due to the significant deceleration at the end of the trip. 

However, the over-discharge of battery is forbidden in the proposed NN-based ECMS. When the SOC attempt to 

drop below the lower bound, the energy control strategy will be switched from the proposed method to Charging-

Depleting/Charge-Sustaining (CD/CS) to maintain the SOC above the limit.  

B. Performance Assessment under Testing Driving Cycles 

To further demonstrate the effectiveness of the proposed NN-based ECMS, two different driving cycles are 

introduced as the testing driving cycles, which are WVUSUB and CQ2. Note that the testing driving cycles are 

excluded in the driving conditions for NN training. Thus, the adaptiveness and optimality of the proposed method 

can be revealed by evaluating its control performance over the selected testing driving cycles. Similar to the 

validating driving cycles, the original WVUSUB and CQ2 cycles are repeated 7 and 3 times respectively, to ensure 

that the corresponding cumulative propulsion energy demand surpasses twice upon the maximum storable battery 

energy.  

Table VI. Fuel consumption comparison over testing driving cycles 

Cases Control Strategy Fuel Consumption (L) Saving Rate (%) Terminal SOC Computation Time (s) 

WVUSUB_7 PI-based ECMS 1.997 - 0.291 57.0 

 NN-based ECMS 1.931 3.36 (95.96%) 0.291 254.2 

 DP 1.856 7.07 0.291 2330.0 
      

CQ2_3 PI-based ECMS 2.153 - 0.294 41.7 

 NN-based ECMS 1.938 9.99 (98.69%) 0.293 193.0 

 DP 1.913 11.15  0.292 1876.8 

The fuel economy assessment over testing driving cycles is listed in Table Ⅵ. As can be found, the terminal 

SOC differences among all selected control strategies are insignificant in both two test cases. Thus, the presented 

remarkable fuel saving rates demonstrate the outstanding energy management performance of DP algorithm and 

the proposed NN-based ECMS. Furthermore, the proposed method is able to realize 95.96% and 98.69% fuel 

savings of DP in WVUSUB_7 and CQ2_3, respectively. These results corroborate that the optimal information 
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learned from the training driving cycles can contribute to attaining the near-optimal control actions for the other 

cycles, thanks to the distinguished generalization of BRNN. Moreover, compared with DP method, the significant 

reduction of computation time can be found by implementing the proposed NN-based ECMS. It indicates that the 

proposed method is more preferable in real-time applications. 

The comparison of engine operating points between DP and NN-ECMS, shown in the normalized engine map 

in Fig. 11, can further verify the optimality of the proposed method, as there is an obvious overlap of operating 

point distribution between two strategies in both WVUSUB_7 and CQ2_3 cases. For further performance 

comparison, the SOC trajectories are shown in Fig. 12 for WVUSUB_7 and CQ2_3, respectively. As is illustrated 

in Fig. 12, DP and NN-based ECMS induce a reasonably similar trend of the SOC trajectory. Under WVUSUB_7 

cycle, the proposed method slightly prioritizes the usage of the electric power rather than the engine, which results 

in lower SOC comparing to that of DP. However, due to the employment of the EF correction in the proposed 

method, the excessive SOC reduction stimulates the preservation of electrical energy, especially when approaching 

the end of the trip. As a result, the SOC based on the proposed method successfully reaches the expected terminal 

SOC of 0.29. On the contrary, the engine is marginally over-used before halfway into CQ2_3 cycle, yielding a 

higher SOC than that of DP. Thereafter, the EF correction module effectively inhibits the engine operation and, 

therefore, gradually reduce the SOC close to the optimal SOC trajectory. 
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Fig. 10. Comparison of the distribution of engine working points under the two testing driving conditions 

 

  

Fig. 11. SOC trajectory comparison under WVUSUB_7 (right) and CQ2_3 (left) 

V. CONCLUSION 

In this study, an NN-based ECMS is developed for PHEVs. The proposed energy management strategy 

contains two NNs. The BRNN, a well-known data-driven method due to its excellent generalization ability, is 

embedded to dynamically identify the near-optimal EF for the ECMS. Additionally, a backpropagation NN is 

employed to predict the engine on/off, aiming to eliminate the side effect of the EF prediction error. The 

corresponding adjustment mechanism is to recognize the optimal engine status based on the global optimal 
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information learned from the training stage. Then, a downscaling factor will be applied to the predicted EF when 

the backpropagation NN suggests deprioritizing the engine operating. As a result, the lower value of EF can 

consolidate the engine shutdown event and prevent sub-optimal power distribution within the powertrain system. 

The NN quality assessment shows that, by taking advantage of the global optimality of DP, the trained 

backpropagation NN can achieve an exceptional detection accuracy of up to 99.1%, while the BRNN obtains the 

regression coefficient of 0.98743 between NN outputs and targets. The outstanding NN quality can enhance the 

overall performance of the proposed method, thereby realizing the near-optimal power distribution. 

The other novelty of the proposed method is the EF correction method. Given that there is no SOC reference 

generation in the proposed method, the terminal SOC has to be constrained strictly by an alternative method. Thus, 

the SOC-distance factor, which is a function of the remaining travel distance and the instantaneous available battery 

capacity, is deployed to scale the EF online. Based on the definition of SOC-distance factor, the over-discharge of 

the battery conduces to the increase of SOC-distance factor and, therefore, reduces the value of the EF to promote 

the use of the engine. Note that the optimal EF derived from the DP optimization will be divided by the 

corresponding SOC-distance factor calculating based on the optimal results. Afterward, the processed EF is 

regarded as the outputs in the training data for the EF BRNN predictor. Regarding online implementation, the output 

predicted by the BRNN will be multiplied by the SOC-distance factor which is determined by the remaining trip 

distance and the current available battery SOC. In this manner, the remaining distance of the trip proactively impacts 

the EF regulation and still reserves the optimality delivered by the DP optimization.  

The control performance validation and testing disclose that the proposed NN-based ECMS induces 

comparable fuel economy to DP optimal solution. Under all validating driving cycles, the proposed method attains 

an average 96.82% fuel saving of global optimization results. Regarding the driving cycles unexposed to the NN 

training, 95.96% and 98.69% fuel saving of DP optimization are expected by the proposed method under 

WVUSUB_7 and CQ2_3, respectively. The promising simulation results verify the effectiveness and adaptiveness 

of the NN-based ECMS.  

Next step work will focus on further performance improvement of the proposed NN-based ECMS by 

considering additional influential factors, such as the driving patterns and the future traffic condition. Although 
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aforementioned influential factors have been investigated and implemented in EMSs [39-42], less effort has been 

made to investigate the effects of these factors on the NN-based ECMS. Furthermore, all validation and testing 

cases are conducted only with the initial SOC of 0.8 in this research. In the future, the adaptiveness of the NN-based 

ECMS to various initial SOCs will be developed. Besides, driving cycles employed in this research are customized 

to remarkably exceed AER to demonstrate the advantage of the proposed method. However, an AER estimation is 

required in practice to determine whether the proposed EMS or the charge-depletion mode is activated. Therefore, 

the AER estimation method will be investigated in the future research. 
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