posted on 2017-06-30, 12:19authored byHao Chen, Yu GongYu Gong, Xia Hong
This paper proposes a novel adaptive multiple modelling algorithm for non-linear and non-stationary systems. This simple modelling paradigm comprises K candidate sub-models which are all linear. With data available in an online fashion, the performance of all candidate sub-models are monitored based on the most recent data window, and M best sub-models are selected from the K candidates. The weight coefficients of the selected sub-model are adapted via the recursive least square (RLS) algorithm, while the coefficients of the remaining sub-models are unchanged. These M model predictions are then optimally combined to produce the multi-model output. We propose to minimise the mean square error based on a recent data window, and apply the sum to one constraint to the combination parameters, leading to a closed-form solution, so that maximal computational efficiency can be achieved. In addition, at each time step, the model prediction is chosen from either the resultant multiple model or the best sub-model, whichever is the best. Simulation results are given in comparison with some typical alternatives, including the linear RLS algorithm and a number of online non-linear approaches, in terms of modelling performance and time consumption.
Funding
This research is sponsored by the UK Engineering and Physical Sciences Research Council and DSTL under the grant number EP/H012516/1.
History
School
Mechanical, Electrical and Manufacturing Engineering
Published in
INTERNATIONAL JOURNAL OF SYSTEMS SCIENCE
Volume
47
Issue
9
Pages
2100 - 2110 (11)
Citation
CHEN, H., GONG, Y. and HONG, X., 2014. A new adaptive multiple modelling approach for non-linear and non-stationary systems. International Journal of Systems Science, 47 (9), pp. 2100-2110.
This work is made available according to the conditions of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) licence. Full details of this licence are available at: https://creativecommons.org/licenses/by-nc-nd/4.0/
Acceptance date
2014-06-03
Publication date
2014
Notes
This is an Accepted Manuscript of an article published by Taylor & Francis in International Journal of Systems Science on 31st October 2014, available online: http://www.tandfonline.com/10.1080/00207721.2014.973926.