A new kernel development algorithm for edge detection using singular value ratios
journal contribution
posted on 2019-06-10, 11:12authored byEgils Avots, Hasan Said Arslan, L. Valgma, Jelena Gorbova, Gholamreza Anbarjafari
The perceptual quality of an image is very sensitive to the degradation of the edge information which is usually caused by
many video signal applications such as super-resolution and denoising. Hence, it is very important to detect and enhance the
edge information of the image. In this research work, new sets of kernels for edge detection using ratios of singular values of
an image are proposed, which results in more detailed detection of edges in the original image. The parameters, which are
the elements of kernel matrices and the threshold value used for producing binary image after convolving the kernels with the
image of the proposed method, are optimised to achieve more detailed edge detection of the image. The experimental results
show that more detailed edges are detected by the proposed method compared to the conventional edge detection techniques.
Funding
This work has been partially supported by Estonian Information
Technology Foundation, Skype Technologies and Estonian Research
Council Grant (PUT638), the Scientific and Technological Research
Council of Turkey (TUBITAK) 1001 Project (116E097), and the
Estonian Centre of Excellence in IT (EXCITE) funded by the
European Regional Development Fund.
History
School
Loughborough University London
Published in
Signal, Image and Video Processing
Volume
12
Pages
1301 - 1309
Citation
AVOTS, E. .... et al., 2018. A new kernel development algorithm for edge detection using singular value ratios. Signal, Image and Video Processing, 12(7), pp. 1301 - 1309.
This work is made available according to the conditions of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) licence. Full details of this licence are available at: https://creativecommons.org/licenses/by-nc-nd/4.0/