Loughborough University

File(s) under permanent embargo

Reason: This item is currently closed access.

A nonlinear biomechanical model based registration method for aligning prone and supine MR breast images

journal contribution
posted on 2019-03-21, 11:09 authored by Lianghao Han, John H. Hipwell, Björn Eiben, Dean C. Barratt, Marc Modat, S. Ourselin, David J. Hawkes
Preoperative diagnostic magnetic resonance (MR) breast images can provide good contrast between different tissues and 3-D information about suspicious tissues. Aligning preoperative diagnostic MR images with a patient in the theatre during breast conserving surgery could assist surgeons in achieving the complete excision of cancer with sufficient margins. Typically, preoperative diagnostic MR breast images of a patient are obtained in the prone position, while surgery is performed in the supine position. The significant shape change of breasts between these two positions due to gravity loading, external forces and related constraints makes the alignment task extremely difficult. Our previous studies have shown that either nonrigid intensity-based image registration or biomechanical modelling alone are limited in their ability to capture such a large deformation. To tackle this problem, we proposed in this paper a nonlinear biomechanical model-based image registration method with a simultaneous optimization procedure for both the material parameters of breast tissues and the direction of the gravitational force. First, finite element (FE) based biomechanical modelling is used to estimate a physically plausible deformation of the pectoral muscle and the major deformation of breast tissues due to gravity loading. Then, nonrigid intensity-based image registration is employed to recover the remaining deformation that FE analyses do not capture due to the simplifications and approximations of biomechanical models and the uncertainties of external forces and constraints. We assess the registration performance of the proposed method using the target registration error of skin fiducial markers and the Dice similarity coefficient (DSC) of fibroglandular tissues. The registration results on prone and supine MR image pairs are compared with those from two alternative nonrigid registration methods for five breasts. Overall, the proposed algorithm achieved the best registration performance on fiducial markers (target registration error, 8.44 ±5.5 mm for 45 fiducial markers) and higher overlap rates on segmentation propagation of fibroglandular tissues (DSC value > 82%).


This work is supported by funding from EPSRC grants: EP/K020439/1 and EP/E031579/1; EU FP7 Virtual Physiological Human grants: “HAMAM” (FP7-ICT-2007.5.3, 224538), “VPH-PRISM” (FP7-ICT-2011-9, 601040) and “PICTURE” (FP7-ICT-2011-9, 600948) and Philips Research, Hamburg.



  • Science


  • Computer Science

Published in

IEEE Transactions on Medical Imaging






682 - 694


HAN, L. ... et al, 2014. A nonlinear biomechanical model based registration method for aligning prone and supine MR breast images. IEEE Transactions on Medical Imaging, 33 (3), pp.682-694.




  • SMUR (Submitted Manuscript Under Review)

Acceptance date


Publication date



This paper is closed access.






  • en