A novel attention model across heterogeneous features for stuttering event detection
Stuttering is a prevalent speech disorder affecting millions worldwide. To provide an automatic and objective stuttering assessment tool, Stuttering Event Detection (SED) is under extensive investigation for advanced speech research and applications. Despite significant progress achieved by various machine learning and deep learning models, SED directly from speech signal is still challenging due to stuttering speech’s heterogeneous and overlapped nature. This paper presents a novel SED approach using multi-feature fusion and attention mechanisms. The model utilises multiple acoustic features extracted based on different pitch, time-domain, frequency domain, and automatic speech recognition feature to detect stuttering core behaviours more accurately and reliably. In addition, we exploit both spatial and temporal attention mechanisms as well as Bidirectional Long Short-Term Memory (BI-LSTM) modules to learn better representations to improve the SED performance. The experimental evaluation and analysis convincingly demonstrate that our proposed model surpasses the state-of-the-art models on two popular stuttering datasets, with 4% and 3% overall F1 scores, respectively. The superior results indicate the consistency of our proposed method, supported by both multi-feature and attention mechanisms in different stuttering events datasets.
History
School
- Science
Department
- Computer Science
Published in
Expert Systems with ApplicationsVolume
244Publisher
ElsevierVersion
- VoR (Version of Record)
Rights holder
© The Author(s)Publisher statement
This is an Open Access Article. It is published by Elsevier under the Creative Commons Attribution 4.0 International Licence (CC BY). Full details of this licence are available at: https://creativecommons.org/licenses/by/4.0/Acceptance date
2023-12-13Publication date
2023-12-28Copyright date
2023ISSN
0957-4174eISSN
1873-6793Publisher version
Language
- en